首页> 外文期刊>Neurocomputing >Sentiment key frame extraction in user-generated micro-videos via low-rank and sparse representation
【24h】

Sentiment key frame extraction in user-generated micro-videos via low-rank and sparse representation

机译:通过低级别和稀疏表示,在用户生成的微视频中的情感关键帧提取

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

It is a prevailing trend that the user-generated content (UGC) on social media is shifting toward mobile video and micro content. Sentiment analysis and emotion recognition extract the opinions expressed in UGC and are important to understand the fast-growing mobile micro-videos. Although extensive research efforts have been devoted to it, most of the existing studies pre-processed the video before extracting sentiment features, pre-sampling as an example. Due to the rather unstructured nature of user-generated videos and the sparsely expressed emotions, sampling before sentiment analysis can remove visual contents important to understand the video. In this paper, a novel unsupervised sentiment key frame extraction (SKFE) model based on low-rank and sparse representation is proposed. Sparsity is the important characteristic distinct to a video frame. The low-rank constraint is helpful to improve the robustness to noise and outliers. The 1 2 , 1 -norm sparsity is adopted to improve the robustness via different indexes running through the feature dimensions and among the video frames. To better characterize the relationship between the local features and alleviate the sensitiveness of sparse coding, a regularization term based on the Laplacian matrix is introduced to preserve the consistency of sparse codes for similar local features. The experimental results on publicly available datasets demonstrate the effectiveness of the proposed SKFE model. (C) 2020 Elsevier B.V. All rights reserved.
机译:这是一种普遍的趋势,即社交媒体上的用户生成的内容(UGC)正在向移动视频和微内容转换。情感分析和情感认可提取UGC中表达的意见,并对了解快速增长的移动微观视频非常重要。虽然已经致力于广泛的研究工作,但大多数现有研究在提取情绪特征之前预处理视频,以预先取样为例。由于用户生成的视频和稀疏表达情绪的相当非结构化,在情感分析之前的采样可以消除对视频的重要视觉内容来了解​​。本文提出了一种基于低级别和稀疏表示的新型无监督的情感关键帧提取(SKFE)模型。稀疏性是与视频框架不同的重要特征。低级约束有助于提高对噪声和异常值的鲁棒性。采用1 2,1-夜间稀疏性来通过通过特征尺寸和视频帧中运行的不同索引来改善鲁棒性。为了更好地表征局部特征与缓解稀疏编码的敏感性之间的关系,引入了基于LAPLACIAN矩阵的正则化术语以保留类似局部特征的稀疏代码的一致性。公开数据集的实验结果证明了所提出的SKFE模型的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第14期|441-453|共13页
  • 作者单位

    South China Univ Technol Sch Software Engn Guangzhou 510006 Guangdong Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China|South China Univ Technol Modern Ind Technol Res Inst Meizhou 514021 Peoples R China;

    South China Agr Univ Coll Math & Informat Guangzhou 510642 Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou 510006 Guangdong Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Video analytics; Video emotion recognition; Key frame extraction; Video summarization; Sparse representation; Low-rank representation;

    机译:视频分析;视频情感识别;关键帧提取;视频摘要;稀疏表示;低秩表示;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号