首页> 外文期刊>Neurocomputing >Improving convolutional neural network for text classification by recursive data pruning
【24h】

Improving convolutional neural network for text classification by recursive data pruning

机译:通过递归数据修剪改进文本分类的卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

In spite of the state-of-the-art performance of deep neural networks, shallow neural networks are still the choice in applications with limited computing and memory resources. Convolutional neural network (CNN), in particular the one-convolutional-layer CNN, is a widely-used shallow neural network in natural language processing tasks such as text classification. However, it was found that CNNs may misfit to task-irrelevant words in dataset, which in turn leads to unsatisfactory performance. To alleviate this problem, attention mechanism can be integrated into CNN, but this takes up the limited resources. In this paper, we propose to address the misfitting problem from a novel angle - pruning task-irrelevant words from the dataset. The proposed method evaluates the performance of each convolutional filter based on its discriminative power of the feature generated at the pooling layer, and prunes words captured by the poorly-performed filters. Experiment results show that our proposed model significantly outperforms the CNN baseline model. Moreover, our proposed model produces performance similar to or better than the benchmark models (attention integrated CNNs) while demanding less parameters and FLOPs, and is therefore a choice model for resource limited scenarios, such as mobile applications. (C) 2020 Elsevier B.V. All rights reserved.
机译:尽管深神经网络的最先进的性能,但浅的神经网络仍然是计算和内存资源有限的应用中的选择。卷积神经网络(CNN),特别是单卷积层CNN,是一种广泛使用的浅神经网络,其自然语言处理任务如文本分类。但是,发现CNNS可能会对数据集中的任务 - 无关的单词错入,这反过来导致表现不令人满意。为了减轻这个问题,可以将注意力集成到CNN中,但这占据了有限的资源。在本文中,我们建议从数据集中从一个小说角度修剪任务 - 无关的单词解决了不带的问题。所提出的方法基于在汇集层生成的特征的辨别力来评估每个卷积滤波器的性能,并且由所执行不良滤波器捕获的剪枝词。实验结果表明,我们提出的模型显着优于CNN基线模型。此外,我们提出的模型产生与基准模型(注意集成CNNS)类似或更好的性能,同时要求更少的参数和拖鞋,因此是资源有限场景的选择模型,例如移动应用程序。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第13期|143-152|共10页
  • 作者单位

    Nanyang Technol Univ Inst Catastrophe Risk Management Interdisciplinary Grad Programme Singapore 639798 Singapore;

    Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore;

    Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore;

    Nanyang Technol Univ Inst Catastrophe Risk Management Interdisciplinary Grad Programme Singapore 639798 Singapore|Nanyang Technol Univ Sch Civil & Environm Engn Singapore 639798 Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Data pruning; Convolutional neural network; Text classification;

    机译:数据修剪;卷积神经网络;文本分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号