首页> 外文期刊>Neurocomputing >Adaptive weighted motion averaging with low-rank sparse for robust multi-view registration
【24h】

Adaptive weighted motion averaging with low-rank sparse for robust multi-view registration

机译:自适应加权运动平均,低级别稀疏用于强大的多视图注册

获取原文
获取原文并翻译 | 示例

摘要

Motion averaging has recently been introduced as an effective means to tackle the registration of multiview range scans. This approach can view parts of pair-wise motions with high reliability as an input to estimate the global motions for a multi-view registration. However, reliable pair-wise motions are not easy to confirm in most practical applications without prior knowledge. In this paper, we propose an adaptive low-rank sparse (LRS) weighted motion averaging method for a robust and accurate multiview registration, which can directly reconstruct high-quality 3D shape models from a set of unordered range scans. Specifically, we first introduce LRS matrix decomposition to automatically compute the initial global motions. The LRS matrix decomposition can recover the initial global models through the full exploration of a set of pair-wise motions. Subsequently, we extend the motion averaging with an adaptive weight computation by developing an optimization strategy using the Lagrange multiplier method, which can adaptively compute the weights of the reliability for each pair-wise relative motion. Accordingly, the proposed method can recover accurate and robust global motions in a set of iterations through weighted motion averaging. Experimental results on several public datasets demonstrate the excellent performance of the proposed method in comparison with state-of-the-art multi-view registration and 3D scene reconstruction. (C) 2020 Elsevier B.V. All rights reserved.
机译:最近被引入运动平均作为解决多维视图范围扫描的注册的有效手段。这种方法可以通过高可靠性视图为一部分配对运动,作为估计多视图注册的全局运动的输入。然而,在没有先验知识的情况下,在大多数实际应用中,可靠的配对运动不易确认。在本文中,我们提出了一种自适应低级稀疏(LRS)加权运动平均方法,用于稳健和准确的多视图注册,可以直接从一组无序范围扫描重建高质量的3D形状模型。具体地,我们首先介绍LRS矩阵分解,以自动计算初始全局动作。 LRS矩阵分解可以通过全面探索一组配对运动来恢复初始全球模型。随后,我们通过使用拉格朗日乘法器方法开发优化策略来扩展具有自适应权重计算的运动平均,这可以自适应地计算每个对相对运动的可靠性的权重。因此,所提出的方法可以通过加权运动平均在一组迭代中恢复准确和鲁棒的全局动作。几个公共数据集上的实验结果证明了与最先进的多视图登记和3D场景重建相比的提出方法的优异性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第6期|230-239|共10页
  • 作者单位

    Xi An Jiao Tong Univ Sch Software Engn Xian Peoples R China;

    Xi An Jiao Tong Univ Sch Software Engn Xian Peoples R China;

    Xi An Jiao Tong Univ Sch Software Engn Xian Peoples R China;

    Xi An Jiao Tong Univ Sch Software Engn Xian Peoples R China;

    Lanzhou Univ Technol Coll Elect & Informat Engn Lanzhou 730050 Peoples R China;

    Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Point cloud; Multi-view registration; Motion averaging; Low-rank and sparse matrix; Lagrange multiplier;

    机译:点云;多视图注册;运动平均;低级和稀疏矩阵;拉格朗日乘法器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号