首页> 外文期刊>Neurocomputing >Deep and wide feature based extreme learning machine for image classification
【24h】

Deep and wide feature based extreme learning machine for image classification

机译:基于深度和广泛的图像分类的极限机器

获取原文
获取原文并翻译 | 示例

摘要

Extreme Learning Machine (ELM) is a powerful and favorable classifier used in various applications due to its fast speed and good generalization capability. However, when dealing with complex visual tasks, the shallow architecture of ELM makes it infeasible to have good performance when raw image data are directly fed in as input. Therefore, several works tried to make use of deep neural networks (DNNs) to extract features before ELM classification. On the other hand, when the depth of DNN is too deep, the ELM classifier may suffer from overfitting problem. To solve this issue, a novel deep and wide feature based Extreme Learning Machine (DW-ELM) has been proposed in this research work. We show that the overfitting problem can be largely remedied by employing a "widened" convolutional neural network (CNN) for feature extraction, in the sense that the number of feature maps for each convolutional layer is increased by factor of k compared to a reference model, i.e. deep residual networks (ResNets). While the wide design of residual networks has been shown to benefit image classification in terms of accuracy and efficiency, its application for feature extraction is not fully investigated.We provide an extensive experimental study in this work, showing that when combined with ELM that serves as a classifier, using wide ResNets (WRNs) for feature extraction can produce a performance leap on all benchmark datasets compared to a plain end-to-end trained network over a wide range of selections regardless of architecture choices and ELM designs, while normal ResNets as feature extractors do not provide a performance gain. The gap is even larger when fewer training iterations are employed. This indicates that a good feature extractor for ELM must be wide and deep. Experiments conducted on five benchmark datasets (CIFAR-100, CIFAR-10, STL-10, Flower-102 and Fashion-MNIST) have shown significant accuracy enhancement as well as training stability of the proposed DW-ELM. Ablation studies also demonstrate that the ELM classifier is an important component for DW-ELM which enables superior performance compared with SVM based image classification approaches. (c) 2020 Elsevier B.V. All rights reserved.
机译:极端学习机(ELM)是一种强大而有利的分类器,它由于其快速速度和良好的泛化能力而在各种应用中使用。然而,在处理复杂的视觉任务时,榆树的浅架构使得当原始图像数据直接馈入输入时具有良好的性能即可实现良好的性能。因此,有几项工作试图利用深神经网络(DNN)来提取ELM分类之前的特征。另一方面,当DNN的深度太深时,ELM分类器可能遭受过度拟合的问题。为了解决这个问题,在这项研究工作中提出了一种新的深层和广泛的专业的极限极限机(DW-ELM)。我们表明,通过使用用于特征提取的“加宽”卷积神经网络(CNN),可以很大程度上地补充过度的问题,因为与参考模型相比,每个卷积层的特征贴图的数量增加因子,可以很大程度上地弥补。 ,即深剩余网络(Resnets)。虽然已经显示了剩余网络的广泛设计,以便在准确性和效率方面有利于图像分类,但它没有完全研究其对特征提取的应用。我们在这项工作中提供了一个广泛的实验研究,表明当与榆树相结合时对于特征提取的宽Resnet(WRNS)可以在所有基准数据集中生成所有基准数据集的性能跃升,而不管架构选择和榆树设计,均为正常的ELM设计特征提取器不提供性能增益。当采用较少的训练迭代时,间隙甚至更大。这表明ELM的良好特征提取器必须宽深。在五个基准数据集(CiFar-100,CiFar-10,STL-10,Flower-102和Fashion-Mnist)上进行的实验表明了提出的DW-ELM的训练稳定性。消融研究还表明,ELM分类器是DW-ELM的重要组成部分,其能够与基于SVM的图像分类方法相比的卓越性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第28期|426-436|共11页
  • 作者单位

    Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore;

    Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore;

    Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore;

    Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Extreme Learning Machine; Image Classification; Wide Residual Network;

    机译:极端学习机;图像分类;宽残余网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号