首页> 外文期刊>Neurocomputing >INOR-An Intelligent noise reduction method to defend against adversarial audio examples
【24h】

INOR-An Intelligent noise reduction method to defend against adversarial audio examples

机译:INOR-AN智能降噪方法,用于防御对抗性音频示例

获取原文
获取原文并翻译 | 示例

摘要

Recently, Automatic Speech Recognition(ASR) systems are seriously threatened by adversarial audio examples. The defense against adversarial audio examples has become an urgent issue. Different from adversarial image examples whose target is limited in the finite categories, the target of adversarial audio examples can be any combination of the words in a language. Adversarial audio examples aim to change the semantic of the audio. The semantic is explicitly represented in transcription distance, which affects the adversarial perturbation. This paper analyzes the relationship between semantic difference and adversarial perturbation. Quantization and local smoothing are calibrated to evaluate their performance. We observe that, for adversarial audio examples with different transcription distance levels, the capability of different denoising strategies varies. Therefore, we first introduce the wavelet filter, which denoises the signal in the transformed domain. Then we explore the defense capability of combined filters. Finally, a new intelligent noise reduction method-INOR is proposed to improve the denoising performance of audios under different levels of transcription distance. Experimental results show that INOR is effective in mitigating the adversarial perturbations for adversarial examples with different transcription distance levels. The average CER and WER is reduced by 33% and 55%. (C) 2020 Elsevier B.V. All rights reserved.
机译:最近,通过对抗音频示例严重威胁到自动语音识别(ASR)系统。防范对抗对抗音频示例已成为一个紧急问题。不同于其目标在有限类别中受到限制的对抗性图像示例,对抗性音频示例的目标可以是语言中的单词的任何组合。对抗音频示例的目标是改变音频的语义。语义在转录距离中明确表示,这会影响对抗扰动。本文分析了语义差异与对抗扰动之间的关系。校准量化和局部平滑以评估它们的性能。我们观察到,对于具有不同转录距离水平的对抗性音频示例,不同的去噪策略的能力变化。因此,我们首先介绍小波滤波器,该小波滤波器将其剥夺转换域中的信号。然后我们探索组合过滤器的防御能力。最后,建议新的智能降噪方法 - 在不同程度的转录距离下提高Audios的去噪表现。实验结果表明,INOR有效地减轻了具有不同转录距离水平的对抗性实例的对抗性扰动。平均的CER和WER减少了33%和55%。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第11期|160-172|共13页
  • 作者单位

    Chinese Acad Sci Inst Comp Technol State Key Lab Comp Architecture Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Inst Comp Technol State Key Lab Comp Architecture Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Duke Univ Dept Elect & Comp Engn Durham NC 27708 USA;

    Chinese Acad Sci Inst Comp Technol State Key Lab Comp Architecture Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Inst Comp Technol State Key Lab Comp Architecture Beijing 100190 Peoples R China;

    Xi An Jiao Tong Univ Sch Microelect Xian 710049 Shanxi Peoples R China;

    Chinese Acad Sci Inst Comp Technol State Key Lab Comp Architecture Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Adversarial audio examples; Defense against adversarial audio examples; INOR;

    机译:对抗音频例子;防御对抗的音频示例;INOR;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号