首页> 外文期刊>Neurocomputing >An Autuencoder-based Data Augmentation Strategy for Generalization Improvement of DCNNs
【24h】

An Autuencoder-based Data Augmentation Strategy for Generalization Improvement of DCNNs

机译:基于Autuencoder的DCNN泛化改进的数据增强策略

获取原文
获取原文并翻译 | 示例

摘要

Inspired by the phenomenon that the decoding weights of a well-trained autoencoder contain the information of the training samples, we proposed a data augmentation method by utilizing the decoding weights. Given a batch of training data, the autoencoder is trained and the decoding weights are activated; the decoding weights are then combined with the raw samples to generate augmented samples. Furthermore, we probe its working mechanism in three ways: (i) we prove that the decoding weights and the raw samples are of linear relationship under the transformation of a certain invertible function; (ii) the proposed method can sample from a larger range in both feature dimensions and label dimension, which can be interpreted as a broader distribution vicinity compared with those by other approaches; (iii) the model trained with our data augmentation approach has better representation capability, which is reflected by the higher Fisher's criteria value in deep feature space. We conduct extensive experiments on image and tabular dataset with multiple network architectures. The proposed method provides significant generalization performance improvement compared with the baseline and better or comparable performance compared with the other state-of-the-art data augmentation approaches. (C) 2020 Elsevier B.V. All rights reserved.
机译:灵感来自训练有素的AutoEncoder的解码权重包含训练样本的信息的现象,我们通过利用解码权重来提出数据增强方法。给定批次训练数据,训练了AutoEncoder,并激活解码权重;然后将解码权重与原始样本组合以产生增强样本。此外,我们以三种方式探测其工作机制:(i)我们证明解码权重和原始样本在某种可逆函数的变换下是线性关系; (ii)所提出的方法可以从特征尺寸和标签尺寸的较大范围内采样,该标签尺寸可以被解释为与其他方法相比的更广泛的分布附近; (iii)通过我们的数据增强方法培训的模型具有更好的表示能力,这反映了更高的Fisher在深度特征空间中的标准值。我们对具有多个网络架构的图像和表格数据集进行了广泛的实验。与与其他最先进的数据增强方法相比,该方法提供了显着的泛化性能改进,与基线和更好或更好的性能相比。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号