首页> 外文期刊>Neurocomputing >Adaptive neuro-fuzzy PID controller based on twin delayed deep deterministic policy gradient algorithm
【24h】

Adaptive neuro-fuzzy PID controller based on twin delayed deep deterministic policy gradient algorithm

机译:基于双延迟深度确定性政策梯度算法的自适应神经模糊PID控制器

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an adaptive neuro-fuzzy PID controller based on twin delayed deep deterministic policy gradient (TD3) algorithm for nonlinear systems. In this approach, the observation of the environment is embedded with information of a multiple input single output (MISO) fuzzy inference system (FIS) and have a specially defined fuzzy PID controller in neural network (NN) formation acting as the actor in the TD3 algorithm, which achieves automatic tuning of gains of fuzzy PID controller. From the control perspective, the controller combines the merits of both FIS and PID controller and utilizes reinforcement learning algorithm for optimizing parameters. From the reinforcement learning point of view, embedding the prior knowledge into the fuzzy PID controller incorporated in the actor network helps reduce the learning difficulty in the training process. The proposed method was tested on the cart-pole system in simulation environment with comparison of a linear PID controller, which demonstrates the robustness and generalization of the proposed approach. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文介绍了基于双延迟深层确定性政策梯度(TD3)算法的自适应神经模糊PID控制器。在这种方法中,对环境的观察嵌入了多输入单输出(MISO)模糊推理系统(FIS)的信息,并且在神经网络(NN)形成中具有特殊定义的模糊PID控制器,其作为TD3中的actor算法,实现了模糊PID控制器的自动调整。从控制角度来看,控制器结合了FIS和PID控制器的优点,并利用了加强学习算法来优化参数。从加强学习的角度来看,将先验知识嵌入到参与者网络中的模糊PID控制器中有助于降低培训过程中的学习难度。在仿真环境中测试了所提出的方法,与线性PID控制器进行了比较,这证明了所提出的方法的鲁棒性和泛化。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号