首页> 外文期刊>Neurocomputing >Multi-negative samples with Generative Adversarial Networks for image retrieval
【24h】

Multi-negative samples with Generative Adversarial Networks for image retrieval

机译:具有用于图像检索的生成对抗网络的多阴性样本

获取原文
获取原文并翻译 | 示例

摘要

The task of image retrieval has received considerable attention from the visual Al community. However, collecting large-scale labeled images for training is rather laborious and expensive. Moreover, negative samples are treated equally without considering their differences when compared with the query. To overcome those problems, in this paper, we propose to utilize generated virtual images and multiple negative samples to simultaneously learn image representations for the task of image retrieval. In our method, we first utilize the Generative Adversarial Networks in a semi-supervised fashion to produce virtual images with an adversarial loss. Second, considering the neighborhood structure within negative samples, a random sampling algorithm is proposed to effectively mining the potentially hard samples. Third, we propose a multi-negative loss function with the Kullback-Leibler divergence. Finally, by optimizing the total loss the deep neural networks are trained. Then the learned networks are further used to obtain image representations. Extensive experiments are conducted on publicly available datasets. Our model demonstrates better performances in the task of image retrieval. (C) 2019 Elsevier B.V. All rights reserved.
机译:图像检索的任务从Visual Al社区接受了相当大的关注。然而,收集大规模标记的图像以进行培训相当费力且昂贵。此外,在与查询相比时,同等地处理了负样本而不考虑它们的差异。为了克服这些问题,在本文中,我们建议利用生成的虚拟图像和多个否定样本来同时学习图像检索任务的图像表示。在我们的方法中,我们首先以半监督的方式利用生成的对抗性网络,以产生具有对抗性损失的虚拟图像。其次,考虑到负样本内的邻域结构,提出了一种随机采样算法,以有效地挖掘潜在的硬样品。第三,我们提出了一种多负损失函数,与kullback-leibler发散。最后,通过优化培训深度神经网络的总损失。然后,学习的网络还用于获得图像表示。广泛的实验是在公开的数据集上进行的。我们的模型在图像检索任务中展示了更好的表现。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第21期|146-157|共12页
  • 作者单位

    Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China|Minist Educ Engn Res Ctr Informat Networks Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China|Lanzhou Univ Technol Sch Comp & Commun Lanzhou 730050 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China|Minist Educ Engn Res Ctr Informat Networks Beijing 100876 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-negative samples; Generative Adversarial Networks; Virtual images; Semi-supervised; Image retrieval;

    机译:多负样本;生成的对抗网络;虚拟图像;半监督;图像检索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号