首页> 外文期刊>Neurocomputing >Computer aided Alzheimer's disease diagnosis by an unsupervised deep learning technology
【24h】

Computer aided Alzheimer's disease diagnosis by an unsupervised deep learning technology

机译:计算机辅助Alzheimer的疾病诊断由无人监督的深度学习技术

获取原文
获取原文并翻译 | 示例

摘要

Deep learning technologies have played more and more important roles in Computer Aided Diagnosis (CAD) in medicine. In this paper, we tackled the problem of automatic prediction of Alzheimer's Disease (AD) based on Magnetic Resonance Imaging (MRI) images, and propose a fully unsupervised deep learning technology for AD diagnosis. We first implement the unsupervised Convolutional Neural Networks (CNNs) for feature extraction, and then utilize the unsupervised predictor to achieve the final diagnosis. In the proposed method, two kinds of data forms, one slice and three orthogonal panels (TOP) of MRI image, are employed as the input data respectively. Experimental results run on all the 1075 subjects in database of the Alzheimer's Disease Neuroimaging Initiative (ADNI 1 1.5T) show that the proposed method with one slice data yields the promising prediction results for AD vs. MCI (accuracy 95.52%) and MCI vs. NC (accuracy 90.63%), and the proposed methods with TOP data yields the best overall prediction results for AD vs. MCI (accuracy 97.01%) and MCI vs. NC (accuracy 92.6%). (C) 2019 Elsevier B.V. All rights reserved.
机译:深度学习技术在医学计算机辅助诊断(CAD)中发挥了越来越重要的作用。在本文中,我们基于磁共振成像(MRI)图像,解决了Alzheimer疾病(AD)的自动预测问题,并提出了一种完全无监督的深度学习技术,可用于广告诊断。我们首先为特征提取实施无监督的卷积神经网络(CNNS),然后利用无监督的预测因子来实现最终的诊断。在所提出的方法中,分别用两种数据形式,MRI图像的三个正交板(顶部)作为输入数据。实验结果在阿尔茨海默病神经影像疾病(ADNI 1 1.5T)数据库中的所有1075个受试者中运行(ADNI 1 1.5T)表明,具有一个切片数据的提出方法产生了广告与MCI(精度95.52%)和MCI与MCI与MCI的有希望的预测结果。 NC(精度为90.63%),以及具有顶部数据的提议方法产生了AD与MCI(精度97.01%)和MCI与NC的最佳总体预测结果(精度为92.6%)。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第7期|296-304|共9页
  • 作者单位

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Computat Intelligence Chongqing 400065 Peoples R China;

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Computat Intelligence Chongqing 400065 Peoples R China;

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Computat Intelligence Chongqing 400065 Peoples R China;

    Univ Queensland Sch Informat Technol & Elect Engn Brisbane Qld 4072 Australia;

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Computat Intelligence Chongqing 400065 Peoples R China;

    Natl Res Inst Family Planning Human Genet Resource Ctr Beijing 100081 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Unsupervised learning; Convolutional neural network; Alzheimer's disease prediction; Magnetic Resonance Imaging data; Computer aided diagnosis;

    机译:深入学习;无监督学习;卷积神经网络;阿尔茨海默病预测;磁共振成像数据;计算机辅助诊断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号