首页> 外文期刊>Neurocomputing >CcNet: A cross-connected convolutional network for segmenting retinal vessels using multi-scale features
【24h】

CcNet: A cross-connected convolutional network for segmenting retinal vessels using multi-scale features

机译:CCNet:使用多尺度特征分割视网膜血管的交叉连接卷积网络

获取原文
获取原文并翻译 | 示例

摘要

Retinal vessel segmentation (RVS) helps the diagnosis of diabetic retinopathy, which can cause visual impairment and even blindness. Some problems are hindering the application of automatic RVS, including accuracy, robustness and segmentation speed. In this paper, we propose a cross-connected convolutional neural network (CcNet) for the automatic segmentation of retinal vessel trees. In the CcNet, convolutional layers extract the features and predict the pixel classes according to those learned features. The CcNet is trained and tested with full green channel images directly. The cross connections between primary path and secondary path fuse the multi-level features. The experimental results on two publicly available datasets (DRIVE: Sn = 0.7625, Acc = 0.9528; STARE: Sn = 0.7709, Acc = 0.9633) are higher than those of most state-of-the-art methods. In the cross-training phase, CcNte's accuracy fluctuations (Delta Accs) on DRIVE and STARE are 0.0042 and 0.007, respectively, which are relatively small compared with those of published methods. In addition, our algorithm has faster computing speed (0.063 s) than those listed algorithms using a GPU (graphics processing unit). These results reveal that our algorithm has potential in practical applications due to promising segmentation performances including advanced specificity, accuracy, robustness and fast processing speed. (c) 2019 Elsevier B.V. All rights reserved.
机译:视网膜血管分割(RVS)有助于诊断糖尿病视网膜病变,这可能导致视力障碍甚至失明。一些问题正在阻碍自动RV的应用,包括准确性,鲁棒性和分割速度。在本文中,我们提出了一种交叉连接的卷积神经网络(CCNet),用于视网膜树木的自动分割。在CCNet中,卷积层提取特征并根据学习特征预测像素类。 CCNet直接使用完整的绿色通道图像进行培训和测试。主路径和次级路径之间的交叉连接熔断多级别特征。实验结果在两个公共数据集上(驱动器:SN = 0.7625,ACC = 0.9528; STARE:SN = 0.7709,ACC = 0.9633)高于最先进的方法。在交叉训练阶段,CCNTE在驱动和凝视上的精度波动(Delta ACC)分别为0.0042和0.007,与发布的方法相比,相对较小。此外,我们的算法具有比使用GPU(图形处理单元)的所列出的算法更快的计算速度(0.063秒)。这些结果表明,由于有希望的分割性能,包括高级特异性,准确性,鲁棒性和快速处理速度,我们的算法具有实际应用中的潜力。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第7期|268-276|共9页
  • 作者单位

    South China Normal Univ Sch Phys & Telecommun Engn Guangzhou 510006 Peoples R China;

    South China Normal Univ Sch Phys & Telecommun Engn Guangzhou 510006 Peoples R China;

    South China Normal Univ Sch Phys & Telecommun Engn Guangzhou 510006 Peoples R China;

    Univ Texas San Antonio Dept Comp Sci San Antonio TX 78249 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cross-connection; Retinal vessel segmentation; Convolutional network; Robust; Fast;

    机译:交叉连接;视网膜血管分割;卷积网络;鲁棒;快;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号