首页> 外文期刊>Neurocomputing >Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network
【24h】

Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network

机译:使用剩余卷积神经网络超级分辨率重建单个各向异性三维MR图像

获取原文
获取原文并翻译 | 示例

摘要

High-resolution (HR) magnetic resonance (MR) imaging is an important diagnostic technique in clinical practice. However, hardware limitations and time constraints often result in the acquisition of anisotropic MR images. It is highly desirable but very challenging to enhance image spatial resolution in medical image analysis for disease diagnosis. Recently, studies have shown that deep convolutional neural networks (CNN) can significantly boost the performance of MR image super-resolution (SR) reconstruction. In this paper, we present a novel CNN-based anisotropic MR image reconstruction method based on residual learning with long and short skip connections. The proposed network can effectively alleviate the vanishing gradient problem of deep networks and learn to restore high-frequency details of MR images. To reduce computational complexity and memory usage, the proposed network utilizes cross-plane selfsimilarity of 3D T1-weighted (T1w) MR images. Based on experiments on simulated and clinical brain MR images, we demonstrate that the proposed network can significantly improve the spatial resolution of anisotropic MR images with high computational efficiency. The network trained on T1w MR images is able to effectively reconstruct both SR T1w and T2-weighted (T2w) images, exploiting image features for multi-modality reconstruction. Moreover, the experimental results show that the proposed method outperforms classical interpolation methods, non-local means method (NLM), and sparse coding based algorithm in terms of peak signal-to-noise-ratio, structural similarity image index, intensity profile, and small structures. The proposed method can be efficiently applied to SR reconstruction of thick-slice MR images in the out-of-plane views for radiological assessment and post-acquisition processing. (c) 2019 Published by Elsevier B.V.
机译:高分辨率(HR)磁共振(MR)成像是临床实践中的重要诊断技术。然而,硬件限制和时间约束通常导致获取各向异性MR图像。非常理想,但非常具有挑战性,以提高疾病诊断的医学图像分析中的图像空间分辨率。最近,研究表明,深度卷积神经网络(CNN)可以显着提高MR图像超分辨率(SR)重建的性能。在本文中,我们提出了一种基于剩余学习的基于CNN的各向异性MR图像重建方法,长短跳过连接。所提出的网络可以有效地减轻深网络的消失梯度问题,并学会恢复MR图像的高频细节。为了降低计算复杂性和存储器使用,所提出的网络利用3D T1加权(T1W)MR图像的跨平面自我相似性。基于模拟和临床脑MR图像的实验,我们证明所提出的网络可以显着提高具有高计算效率的各向异性MR图像的空间分辨率。在T1W MR图像上训练的网络能够有效地重建SR T1W和T2加权(T2W)图像,利用用于多模态重建的图像特征。此外,实验结果表明,所提出的方法在峰值信噪比,结构相似性图像指数,强度分布和结构相似性相似度,强度曲线和基于纯粹基于基于算法的经典插值方法,非局部方法(NLM)和基于稀疏编码的算法。小结构。所提出的方法可以有效地应用于在外平面视图中的厚切片MR图像的SR重建,以进行放射学评估和后置地处理。 (c)2019年由elestvier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号