首页> 外文期刊>Neurocomputing >A robot learning framework based on adaptive admittance control and generalizable motion modeling with neural network controller
【24h】

A robot learning framework based on adaptive admittance control and generalizable motion modeling with neural network controller

机译:基于自适应入场控制和神经网络控制器的可通信运动建模的机器人学习框架

获取原文
获取原文并翻译 | 示例

摘要

Robot learning from demonstration (LfD) enables robots to be fast programmed. This paper presents a novel LfD framework involving a teaching phase, a learning phase and a reproduction phase, and proposes methods in each of these phases to guarantee the overall system performance. An adaptive admittance controller is developed to take into account the unknown human dynamics so that the human tutor can smoothly move the robot around in the teaching phase. The task model in this controller is formulated by the Gaussian mixture regression to extract the human-related motion characteristics. In the learning and reproduction phases, the dynamic movement primitive is employed to model a robotic motion that is generalizable. A neural network-based controller is designed for the robot to track the trajectories generated from the motion model, and a radial basis function neural network is used to compensate for the effect caused by the dynamic environments. Experiments have been performed using a Baxter robot and the results have confirmed the validity of the proposed robot learning framework. (C) 2019 Elsevier B.V. All rights reserved.
机译:从示范(LFD)的机器人学习使机器人能够快速编程。本文介绍了一种涉及教学阶段,学习阶段和再现阶段的新型LFD框架,并提出了这些阶段中的每一部中的方法,以保证整体系统性能。开发了一种自适应进入控制器,以考虑到未知的人类动态,以便人民导师可以在教学阶段平稳地移动机器人。该控制器中的任务模型由高斯混合回归制定以提取人类相关的运动特性。在学习和再现阶段中,采用动态运动原语来模拟概遍的机器人运动。设计基于神经网络的控制器,用于跟踪从运动模型产生的轨迹,并且使用径向基函数神经网络来补偿由动态环境引起的效果。使用Baxter机器人进行了实验,结果证实了所提出的机器人学习框架的有效性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第may21期|260-267|共8页
  • 作者单位

    Univ West England Bristol Robot Lab Bristol BS16 1QY Avon England;

    South China Univ Technol Coll Automat Sci & Engn Key Lab Autonomous Syst & Networked Control Guangzhou 510640 Peoples R China;

    Univ West England Bristol Robot Lab Bristol BS16 1QY Avon England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Robot learning; Adaptive admittance control; Motion generalization; Neural network;

    机译:机器人学习;自适应入场控制;运动泛化;神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号