首页> 外文期刊>Neurocomputing >Segmented convolutional gated recurrent neural networks for human activity recognition in ultra-wideband radar
【24h】

Segmented convolutional gated recurrent neural networks for human activity recognition in ultra-wideband radar

机译:超宽带雷达人类活动识别的分段卷积出经常性神经网络

获取原文
获取原文并翻译 | 示例

摘要

The automatic detection and recognition of human activities are valuable for physical security, gaming, and intelligent interface. Compared to an optical recognition system, radar is more robust to variations in lighting conditions and occlusions. The centimeter-wave ultra-wideband radar can even track human motion when the target is fully occluded from it. In this work, we propose a neural network architecture, namely segmented convolutional gated recurrent neural network (SCGRNN), to recognize human activities based on micro-Doppler spectrograms measured by the ultra-wideband radar. Unlike most existing approaches which treat the micro-Doppler spectrograms the same way as natural images, we extract segmented features of spectrograms via convolution operation and encode the feature maps along the time axis with gated recurrent units. Taking advantage of regularities in both the time and Doppler frequency domains in this way, our model can detect activities with arbitrary lengths. The experiments show that our method outperforms existing models in fine temporal resolution, noise robustness, and generalization performance. The radar system can thus recognize human behavior when visible light is blocked by opaque objects. (C) 2019 Elsevier B.V. All rights reserved.
机译:人类活动的自动检测和识别对于物理安全,游戏和智能界面来说是有价值的。与光学识别系统相比,雷达更稳健地对照明条件和闭塞的变化更鲁棒。厘米波超宽带雷达甚至可以在目标完全堵塞时跟踪人类运动。在这项工作中,我们提出了一种神经网络架构,即分段的卷积门经常性神经网络(SCGRNN),以识别基于超宽带雷达测量的微多普勒谱图的人类活动。与对自然图像相同的方式处理微多普勒谱图的大多数现有方法不同,我们通过卷积操作提取频谱图的分段特征,并沿着带有门控复发单元的时间轴对特征映射进行编码。通过这种方式利用时间和多普勒频率域中的规律,我们的模型可以检测任意长度的活动。实验表明,我们的方法优于现有的现有模型,以精细的时间分辨率,噪音稳健性和泛化性能。因此,当可见光被不透明物体阻挡时,雷达系统可以识别人类行为。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号