首页> 外文期刊>Neurocomputing >Robust ellipse fitting based on Lagrange programming neural network and locally competitive algorithm
【24h】

Robust ellipse fitting based on Lagrange programming neural network and locally competitive algorithm

机译:基于拉格朗日编程神经网络和本地竞争算法的强大椭圆拟合

获取原文
获取原文并翻译 | 示例

摘要

Given a set of 2-dimensional (2D) scattering points, obtained from the edge detection process, the aim of ellipse fitting is to construct an elliptic equation that best fits the scattering points. However, the 2D scattering points may contain some outliers. To address this issue, we devise a robust ellipse fitting approach based on two analog neural network models, Lagrange programming neural network (LPNN) and locally competitive algorithm (LCA). We formulate the fitting task as a nonsmooth constrained optimization problem, in which the objective function is an approximated l(0)-norm term. As the LPNN model cannot handle non-differentiable functions, we utilize the internal state concept of LCA to avoid the computation of the derivative at non-differentiable points. Simulation results show that the proposed ellipse fitting approach is superior to several state-of-the-art algorithms. (c) 2020 Elsevier B.V. All rights reserved.
机译:给定由边缘检测过程获得的一组二维(2D)散射点,椭圆拟合的目的是构造最适合散射点的椭圆方程。但是,2D散射点可能包含一些异常值。为解决此问题,我们根据两个模拟神经网络模型,拉格朗日编程神经网络(LPNN)和本地竞争算法(LCA)设计了一种强大的椭圆拟合方法。我们将拟合任务制定为非光滑约束优化问题,其中目标函数是近似的L(0)-norm项。随着LPNN模型无法处理非可分子功能,我们利用LCA的内部状态概念来避免在非可微分点处计算衍生物。仿真结果表明,建议的椭圆拟合方法优于几种最先进的算法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号