首页> 外文期刊>Neurocomputing >Multi-view semantic learning network for point cloud based 3D object detection
【24h】

Multi-view semantic learning network for point cloud based 3D object detection

机译:基于点云的3D对象检测的多视图语义学习网络

获取原文
获取原文并翻译 | 示例

摘要

Point cloud based 3D objection plays a crucial role in real-world applications, such as autonomous driving. In this paper, we propose the Multi-view Semantic Learning Network (MVSLN) for 3D object detection, an approach considering the feature discrimination for LIDAR point cloud. Since the discrete and disordered nature of point cloud, most existing methods ignore the low-level information and focus more on the spatial details of point cloud. To capture the discriminative feature of objects, our MVSLN takes advantages of both spatial and low-level details to further exploit semantic information. Specifically, the Multiple Views Generator (MVG) module in our approach observes the scene from four views by projecting the 3D point cloud to planes with specific angles, which preserves much more low-level features, e.g., texture and edge. To correct the deviation brought by different projection angles, the Spatial Recalibration Fusion (SRF) operation in our approach adjusts the locations of features of these four views, enabling the interaction between different projections. Then the recalibrated features of SRF are sent to the developed 3D Region Proposal Network (RPN) to detect objects. The experimental results on challenging KITTI benchmark verify that our approach achieves a promising performance and outperforms state-of-the-art methods. Furthermore, the discriminative feature extractor brought by exploiting the conspicuous semantic information, leads to encouraging results in the hard-level difficulty of both BEV and 3D object detection tasks, without any help of camera image. (C) 2020 Elsevier B.V. All rights reserved.
机译:点云的3D异议在现实世界应用中起着至关重要的作用,例如自主驾驶。在本文中,我们提出了用于3D对象检测的多视图语义学习网络(MVSLN),考虑LIDAR点云特征识别的方法。由于点云的离散和无序性质,大多数现有方法忽略了低级信息并更多地关注点云的空间细节。为了捕获对象的鉴别特征,我们的MVSLN都需要空间和低级细节的优势,以进一步利用语义信息。具体地,我们的方法中的多视图生成器(MVG)模块通过将3D点云投射到具有特定角度的平面来观察4个视图,这保留了更多的低级功能,例如纹理和边缘。为了纠正不同投影角度所带来的偏差,我们的方法中的空间重新校准融合(SRF)操作调整了这四个视图的特征的位置,从而实现了不同投影之间的交互。然后将SRF的重新校准特征发送到开发的3D区域提议网络(RPN)以检测对象。关于挑战基蒂基准的实验结果验证了我们的方法达到了有希望的性能和优于最先进的方法。此外,通过利用显现性语义信息带来的鉴别特征提取器导致BEV和3D对象检测任务的硬级难度导致导致的结果,而没有相机图像的任何帮助。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第jul15期|477-485|共9页
  • 作者单位

    Nanjing Univ Posts & Telecommun Coll Automat Nanjing Peoples R China;

    Nanjing Univ Posts & Telecommun Coll Automat Nanjing Peoples R China;

    Nanjing Univ Posts & Telecommun Coll Automat Nanjing Peoples R China|Jiangsu HPC & Intelligent Proc Engineer Res Ctr Nanjing Peoples R China;

    North China Elect Power Univ State Key Lab Alternate Elect Power Syst Renewabl Beijing Peoples R China;

    Jiangsu HPC & Intelligent Proc Engineer Res Ctr Nanjing Peoples R China|Nanjing Ctr HPC China Nanjing Peoples R China;

    Nanjing Univ Posts & Telecommun Coll Automat Nanjing Peoples R China|Wuhan Univ Sch Comp Wuhan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D object detection; LIDAR point cloud; Semantic feature; Deep learning;

    机译:3D对象检测;LIDAR点云;语义特征;深度学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号