首页> 外文期刊>Neurocomputing >Galaxy classification: A machine learning analysis of GAMA catalogue data
【24h】

Galaxy classification: A machine learning analysis of GAMA catalogue data

机译:Galaxy分类:GAMA目录数据的机器学习分析

获取原文
获取原文并翻译 | 示例

摘要

We present a machine learning analysis of five labelled galaxy catalogues from the Galaxy And Mass Assembly (GAMA): The SersicCatVIKING and SersicCatUKIDSS catalogues containing morphological features, the GaussFitSimple catalogue containing spectroscopic features, the MagPhys catalogue including physical parameters for galaxies, and the Lambdar catalogue, which contains photometric measurements. Extending work previously presented at the ESANN 2018 conference - in an analysis based on Generalized Relevance Matrix Learning Vector Quantization and Random Forests - we find that neither the data from the individual catalogues nor a combined dataset based on all 5 catalogues fully supports the visualinspection-based galaxy classification scheme employed to categorise the galaxies. In particular, only one class, the Little Blue Spheroids, is consistently separable from the other classes. To aid further insight into the nature of the employed visual-based classification scheme with respect to physical and morphological features, we present the galaxy parameters that are discriminative for the achieved class distinctions. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们展示了来自银河和大众装配(GAMA)的五个标有Galaxy目录的机器学习分析:Sersiccatviking和Sersiccatukidss含有形态学特征的目录,包括光谱特征的高斯特征,Magphys目录,包括用于星系的物理参数,以及Lambdar目录,其中包含光度测量。以前展示的工作展示在澳大利亚2018年会议上 - 基于广义相关矩阵学习量化和随机森林的分析 - 我们发现,基于所有5个目录的各个目录中的数据都没有来自所有5个目录的基于VisualIsepcection的数据集银河分类方案用于对星系进行分类。特别地,只有一个类,小蓝色球形,始终如一地与其他类别分开。为了帮助进一步了解所采用的基于视觉的分类方案的性质,了解物理和形态特征,我们介绍了对所实现的阶级区别的歧视的星系参数。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第may21期|172-190|共19页
  • 作者单位

    Univ Groningen Bernoulli Inst Math Comp Sci & Artificial Intelli POB 407 NL-9700 AK Groningen Netherlands;

    Univ Groningen Kapteyn Astron Inst Landleven 12 NL-9747 AD Groningen Netherlands|SRON Netherlands Inst Space Res Utrecht Netherlands;

    Leiden Univ Leiden Observ POB 9513 NL-2300 RA Leiden Netherlands|Polish Acad Sci Ctr Theoret Phys Al Lotnikow 32-46 PL-02668 Warsaw Poland;

    Leiden Univ Leiden Observ POB 9513 NL-2300 RA Leiden Netherlands|Univ Louisville Dept Phys & Astron 102 Nat Sci Bldg Louisville KY 40292 USA;

    Univ Groningen Bernoulli Inst Math Comp Sci & Artificial Intelli POB 407 NL-9700 AK Groningen Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Learning Vector Quantization; Relevance learning; Galaxy classification; Random Forests;

    机译:学习矢量量化;相关性学习;Galaxy分类;随机森林;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号