首页> 外文期刊>Neurocomputing >Galaxy classification: A machine learning analysis of GAMA catalogue data
【24h】

Galaxy classification: A machine learning analysis of GAMA catalogue data

机译:银河分类:GAMA目录数据的机器学习分析

获取原文
获取原文并翻译 | 示例

摘要

We present a machine learning analysis of five labelled galaxy catalogues from the Galaxy And Mass Assembly (GAMA): The SersicCatVIKING and SersicCatUKIDSS catalogues containing morphological features, the GaussFitSimple catalogue containing spectroscopic features, the MagPhys catalogue including physical parameters for galaxies, and the Lambdar catalogue, which contains photometric measurements. Extending work previously presented at the ESANN 2018 conference - in an analysis based on Generalized Relevance Matrix Learning Vector Quantization and Random Forests - we find that neither the data from the individual catalogues nor a combined dataset based on all 5 catalogues fully supports the visualinspection-based galaxy classification scheme employed to categorise the galaxies. In particular, only one class, the Little Blue Spheroids, is consistently separable from the other classes. To aid further insight into the nature of the employed visual-based classification scheme with respect to physical and morphological features, we present the galaxy parameters that are discriminative for the achieved class distinctions. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们对来自Galaxy And Mass Assembly(GAMA)的五个带标签的星系目录进行了机器学习分析:包含形态特征的SersicCatVIKING和SersicCatUKIDSS目录,包含光谱学特征的GaussFitSimple目录,包含星系物理参数的MagPhys目录以及Lambdar目录,其中包含光度测量。扩展了先前在ESANN 2018大会上提出的工作-在基于广义相关矩阵学习矢量量化和随机森林的分析中-我们发现单个目录的数据或基于所有5个目录的组合数据集都无法完全支持基于视觉检查的星系分类方案,用于对星系进行分类。特别是,只有一类小蓝球体始终可以与其他类分开。为了帮助进一步了解所采用的基于视觉的分类方案在物理和形态特征方面的性质,我们提供了可区分类的星系参数。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第21期|172-190|共19页
  • 作者单位

    Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, POB 407, NL-9700 AK Groningen, Netherlands;

    Univ Groningen, Kapteyn Astron Inst, Landleven 12, NL-9747 AD Groningen, Netherlands|SRON Netherlands Inst Space Res, Utrecht, Netherlands;

    Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands|Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland;

    Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands|Univ Louisville, Dept Phys & Astron, 102 Nat Sci Bldg, Louisville, KY 40292 USA;

    Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, POB 407, NL-9700 AK Groningen, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Learning Vector Quantization; Relevance learning; Galaxy classification; Random Forests;

    机译:学习向量量化关联学习星系分类随机森林;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号