首页> 外文期刊>Neurocomputing >Blind image deblurring via hybrid deep priors modeling
【24h】

Blind image deblurring via hybrid deep priors modeling

机译:通过混合深度先验建模进行盲图像去模糊

获取原文
获取原文并翻译 | 示例

摘要

Blind image deblurring is a challenging low-level vision problem which aims to restore a sharp image only from the blurry observation. Few known information makes this problem fundamentally ill-posed. Most recent works focus on designing various priors on both latent image and blur kernel based on the maximum a posteriori (MAP) model to restrict the solution space. However, their performance is highly related to these hand-crafted explicit priors. In fact, the pre-designed explicit priors may have less flexibility to fit different image structures in real-world scenarios. To overcome these difficulties, we propose a novel framework, named Hybrid Deep Priors Model (HDPM), to simulate the propagation of sharp latent image used in kernel estimation and final deconvolution. Specifically, we introduce the learnable implicit deep prior and hand-crafted explicit prior as regularizations into the MAP inference process to extract the detailed texture and sharp structures of latent image, respectively. In HDPM, we can successfully take the advantages of explicit cues based on task information and implicit deep priors from training data to facilitate the propagation of sharp latent image which is beneficial for the kernel estimation. Extensive experiments demonstrate that the proposed method performs favorably against the state-of-the-art deblurring methods on benchmarks, challenging scenarios and non-uniform images. (C) 2020 Elsevier B.V. All rights reserved.
机译:盲图像去模糊是一个具有挑战性的低级视觉问题,旨在仅从模糊的观察中恢复清晰的图像。很少有已知信息使这个问题从根本上不适。最近的工作集中于基于最大后验(MAP)模型来设计潜在图像和模糊核的各种先验,以限制求解空间。但是,它们的性能与这些手工制作的显式先验高度相关。实际上,预先设计的显式先验可能不太灵活,无法适应实际场景中的不同图像结构。为了克服这些困难,我们提出了一个新颖的框架,称为混合深度先验模型(HDPM),以模拟用于核估计和最终反卷积的清晰潜像的传播。具体来说,我们将可学习的隐式深层先验和手工显式先验作为正则化引入MAP推理过程,以分别提取潜像的详细纹理和清晰结构。在HDPM中,我们可以成功地利用基于任务信息的显式线索和来自训练数据的隐式深层先验优势,以促进清晰的潜像的传播,这有利于核估计。大量的实验表明,所提出的方法在基准,挑战性场景和不均匀图像方面优于最新的去模糊方法。 (C)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第28期|334-345|共12页
  • 作者

  • 作者单位

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Hangzhou 310018 Peoples R China;

    Dalian Univ Technol DUT RU Int Sch Informat Sci & Engn Dalian 116620 Peoples R China|Key Lab Ubiquitous Network & Serv Software Liaoni Dalian 116620 Peoples R China;

    Dalian Univ Technol DUT RU Int Sch Informat Sci & Engn Dalian 116620 Peoples R China|Key Lab Ubiquitous Network & Serv Software Liaoni Dalian 116620 Peoples R China|Guilin Univ Elect Technol Inst Artificial Intelligence Guilin 541004 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image processing; Blind image deblurring; Kernel estimation; Hybrid deep priors; Residual network;

    机译:图像处理;盲图去模糊;内核估计;混合先验残留网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号