首页> 外文期刊>Neurocomputing >A two-stage attention aware method for train bearing shed oil inspection based on convolutional neural networks
【24h】

A two-stage attention aware method for train bearing shed oil inspection based on convolutional neural networks

机译:基于卷积神经网络的火车轴承棚油检查的两阶段注意感知方法

获取原文
获取原文并翻译 | 示例

摘要

As an important component of trains, rolling bearing is always faced with the defection of shed oil, which inevitably threatens the train safety. Therefore, it is of great significance to conduct defection inspection on bearing shed oil. Due to the complex structure of rolling bearings, traditional signal analysis approaches cannot detect the defections of bearing shed oil with high-efficiency and low cost. In recent years, deep learning has achieved remarkable growth and been successfully applied to various computer-vision tasks. Motivated by this fact, we propose a two-stage attention aware method to recognize defections of bearing shed oil. The proposed method is based on convolutional neural networks, can automatically learn bearing defect features, and does not need manual feature design and extraction like traditional methods. The two-stage method cascades a bearing localization stage and a defection segmentation stage, to recognize the defect areas in a coarse-to-fine manner. The localization stage extracts the foremost bearing region and removes the useless part of images, so as to focus the attention of segmentation stage only on the target region. In segmentation stage, we propose a novel attention aware network APP-UNet16, to segment defect areas from extracted bearing region. APP-UNet16 stacks attention gates to enable the attention-aware features change adaptively, and thus can learn to focus on target defect areas automatically. We also utilize transfer learning in constructing the encoder of APP-UNet16, and introduce spatial pyramid pooling to connect the encoder and decoder, to improve traditional UNet. A series of comparative experiments are conducted, to compare our two-stage method with one-stage method which directly perform segmentation on original train images. The results indicate that the proposed two-stage inspection method achieves higher robustness and accuracy in recognizing defect areas with small oil spot. And the experimental results on proposed APP-UNet16 also demonstrate that a better segmentation performance is achieved, compared to traditional UNet and related state-of-art approaches. We will release the source code as well as the trained models to facilitate more research work. (C) 2019 Elsevier B.V. All rights reserved.
机译:作为列车的重要组成部分,滚动轴承始终面临着机油的缺陷,不可避免地威胁着列车的安全。因此,对轴承油进行缺陷检查具有重要意义。由于滚动轴承结构复杂,传统的信号分析方法无法高效,低成本地检测出轴承油的缺陷。近年来,深度学习取得了显着增长,并已成功应用于各种计算机视觉任务。基于这一事实,我们提出了一种分两步注意的方法来识别轴承油的缺陷。该方法基于卷积神经网络,可以自动学习轴承的缺陷特征,并且不需要像传统方法那样手工设计和提取特征。两阶段方法将轴承定位阶段和缺陷分割阶段进行级联,以从粗到精的方式识别缺陷区域。定位阶段提取最前的承载区域并去除图像的无用部分,从而将分割阶段的注意力仅集中在目标区域上。在分割阶段,我们提出了一种新颖的注意力感知网络APP-UNet16,用于从提取的轴承区域中分割出缺陷区域。 APP-UNet16堆叠注意门,以使注意感知功能能够自适应地更改,因此可以学习自动关注目标缺陷区域。我们还在构建APP-UNet16编码器时利用转移学习,并引入了空间金字塔池来连接编码器和解码器,以改进传统的UNet。进行了一系列比较实验,以比较我们的两阶段方法和直接对原始火车图像进行分割的一阶段方法。结果表明,提出的两阶段检测方法在识别油斑较小的缺陷区域时具有较高的鲁棒性和准确性。与传统的UNet和相关的最新技术相比,在拟议的APP-UNet16上的实验结果还表明实现了更好的分割性能。我们将发布源代码以及经过训练的模型,以促进更多的研究工作。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第7期|212-224|共13页
  • 作者

  • 作者单位

    Hunan Univ Coll Informat Sci & Engn Changsha Peoples R China;

    Wuhan Univ Sci & Technol Coll Comp Sci & Technol Hubei Prov Key Lab Intelligent Informat Proc & Re Wuhan Peoples R China;

    SUNY Coll New Paltz Dept Comp Sci New Paltz NY 12561 USA;

    ASTAR Inst Infocomm Res Singapore Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Attention mechanism; Image segmentation; Object detection; Railway inspection; Transfer learning;

    机译:注意机制;图像分割对象检测;铁路检查;转移学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号