首页> 外文期刊>Neurocomputing >Efficient discrete supervised hashing for large-scale cross-modal retrieval
【24h】

Efficient discrete supervised hashing for large-scale cross-modal retrieval

机译:用于大规模跨模式检索的高效离散监督哈希

获取原文
获取原文并翻译 | 示例

摘要

Supervised cross-modal hashing has gained increasing research interest on large-scale retrieval task owning to its satisfactory performance and efficiency. However, there are still some issues to be further addressed: (1) most of them fail to capture the inherent data structure effectively due to the complex correlations among heterogeneous data points; (2) most of them obtain continuous solutions firstly and then quantize the continuous solutions to generate hash codes directly, which causes large quantization error and consequent suboptimal retrieval performance; (3) most of them suffer from relatively high memory cost and computational complexity during training procedure, which makes them unscalable. In this paper, to address above issues, we propose a supervised hashing method for cross-modal retrieval dubbed Efficient Discrete Supervised Hashing (EDSH). Specifically, the sharing space learning with collective matrix factorization and semantic embedding with class labels are seamlessly integrated to learn hash codes. Therefore, the feature based similarities and semantic correlations are both preserved in hash codes, which makes the learned hash codes more discriminative. Then an efficient discrete optimal scheme is designed to handle the scalable issue. Instead of learning hash codes bit-by-bit, hash codes matrix can be obtained directly which is more efficient. Extensive experimental results on three public datasets show that our EDSH produces a superior performance in both accuracy and scalability over several existing cross-modal hashing approaches. (C) 2020 Elsevier B.V. All rights reserved.
机译:有监督的跨模态散列由于其令人满意的性能和效率而在大型检索任务上获得了越来越多的研究兴趣。但是,仍然有一些问题需要进一步解决:(1)由于异构数据点之间的复杂关联,大多数问题无法有效捕获固有数据结构; (2)它们中的大多数首先获得连续解,然后对连续解进行量化以直接生成哈希码,从而导致较大的量化误差并导致次优检索性能; (3)他们中的大多数人在训练过程中遭受相对较高的内存成本和计算复杂度的困扰,这使其无法扩展。在本文中,为解决上述问题,我们提出了一种用于交叉模式检索的监督哈希算法,称为有效离散监督哈希(EDSH)。具体来说,具有集体矩阵分解的共享空间学习和具有类标签的语义嵌入被无缝集成以学习哈希码。因此,基于特征的相似性和语义相关性都保留在哈希码中,这使得学习到的哈希码更具区分性。然后,设计了一种有效的离散最优方案来处理可伸缩性问题。代替逐位学习哈希码,可以直接获得哈希码矩阵,这样效率更高。在三个公共数据集上的大量实验结果表明,与几种现有的跨模式哈希方法相比,我们的EDSH在准确性和可伸缩性方面均具有出色的性能。 (C)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第14期|358-367|共10页
  • 作者

  • 作者单位

    Ludong Univ Dept Informat & Elect Engn Yantai 264000 Peoples R China|Southwest Jiaotong Univ Yantai Res Inst New Generat Informat Technol Chengdu 264000 Sichuan Peoples R China;

    Ludong Univ Dept Informat & Elect Engn Yantai 264000 Peoples R China;

    Zhejiang Univ Dept Data Sci & Engn Management Hangzhou 310058 Peoples R China;

    Southwest Jiaotong Univ Yantai Res Inst New Generat Informat Technol Chengdu 264000 Sichuan Peoples R China;

    Dalian Univ Technol Sch Informat & Commun Engn Dalian 116023 Peoples R China;

    Univ Texas San Antonio Dept Comp Sci San Antonio TX 78249 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cross-modal retrieval; Matrix factorization; Discrete optimization; Semantic embedding; Hashing;

    机译:跨模式检索;矩阵分解离散优化;语义嵌入;散列;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号