首页> 外文期刊>Knowledge-Based Systems >NSDH: A Nonlinear Supervised Discrete Hashing framework for large-scale cross-modal retrieval
【24h】

NSDH: A Nonlinear Supervised Discrete Hashing framework for large-scale cross-modal retrieval

机译:NSDH:一个非线性监督离散散列框架,用于大规模交叉模态检索

获取原文
获取原文并翻译 | 示例

摘要

Hashing technology has been widely used in approximate nearest neighbor search algorithms for large-scale cross-modal retrieval due to its significantly reduced storage and high-speed search capabilities. However, most existing supervised cross-modal hashing methods either mainly rely on binary pairwise similarity and fail to exploit the rich semantic information contained in the label matrix, or the use of single linear projections which suffer from limited information completeness. In this paper, we propose a novel method, named Nonlinear Supervised Discrete Hashing (NSDH). Specifically, NSDH consists of two components, (1) a semantic enhancement descriptor consisting of multiple linear projections that is used to extract comprehensive latent representations of heterogeneous multimedia data, which aligns the original heterogeneous features and integrates the rich semantic label matrix; (2) a fast discrete optimization module used to learn discriminative compact hash codes, which preserves the similarity information using an inner product between the real-valued embeddings of the output of the semantic enhancement descriptors. Therefore, NSDH leverages both the label matrix and similarity information in order to enhance the semantic information of the learned hash codes. In this way, the representation learning capability of the output layer of semantic enhancement descriptors can be greatly enhanced and as a result the learned hash codes are more discriminative. In addition, we present a fast discrete optimization algorithm to efficiently learn the binary hash codes. Results from our experiments on two benchmark datasets highlight the superiority of NSDH in comparison to many state-of-the-art cross-modal hashing methods. (C) 2021 Elsevier B.V. All rights reserved.
机译:由于其显着降低了存储和高速搜索功能,散列技术已广泛应用于大约最近的邻近搜索算法,用于大规模交叉模态检索。然而,大多数现有的监督跨模型散列方法主要依赖于二进制成对相似性,并且不能利用标签矩阵中包含的丰富语义信息,或者使用遭受有限信息完整性的单线性投影。在本文中,我们提出了一种新的方法,名为非线性监督离散散列(NSDH)。具体地,NSDH由两个组件组成,(1)由多个线性投影组成的语义增强描述符,该描述用于提取异构多媒体数据的综合潜在表示,这对准原始异构特征并集成了富语义标签矩阵; (2)用于学习鉴别的紧凑型散列码的快速离散优化模块,其使用语义增强描述符的输出的实际嵌入之间的内部产品保留相似性信息。因此,NSDH利用标签矩阵和相似度信息来利用所学习哈希代码的语义信息。以这种方式,可以大大提高语义增强描述符的输出层的表示学习能力,并且由于学习的散列码是更辨别的。此外,我们提出了一种快速离散优化算法,以有效地学习二进制哈希代码。我们在两个基准数据集中的实验结果突出了NSDH的优越性与许多最先进的跨模型散列方法相比。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第6期|106818.1-106818.13|共13页
  • 作者单位

    Cent South Univ Sch Comp Sci & Engn Changsha 410083 Hunan Peoples R China|Network Resources Management & Trust Evaluat Key Changsha 410083 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410083 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410083 Hunan Peoples R China|Network Resources Management & Trust Evaluat Key Changsha 410083 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410083 Hunan Peoples R China|Network Resources Management & Trust Evaluat Key Changsha 410083 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410083 Hunan Peoples R China|Network Resources Management & Trust Evaluat Key Changsha 410083 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410083 Hunan Peoples R China;

    Network Resources Management & Trust Evaluat Key Changsha 410083 Hunan Peoples R China|Cent South Univ Big Data Inst Changsha 410083 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cross-modal retrieval; Supervised hashing; Semantic enhancement descriptors;

    机译:跨模型检索;监督散列;语义增强描述符;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号