首页> 外文期刊>Neurocomputing >Discrete-time zeroing neural network for solving time-varying Sylvester-transpose matrix inequation via exp-aided conversion
【24h】

Discrete-time zeroing neural network for solving time-varying Sylvester-transpose matrix inequation via exp-aided conversion

机译:离散时间归零神经网络通过指数转换解时变Sylvester转置矩阵不等式

获取原文
获取原文并翻译 | 示例

摘要

Time-varying linear matrix equations and inequations have been widely studied in recent years. Time-varying Sylvester-transpose matrix inequation, which is an important variant, has not been fully investigated. Solving the time-varying problem in a constructive manner remains a challenge. This study considers an exp-aided conversion from time-varying linear matrix inequations to equations to solve the intractable problem. On the basis of zeroing neural network (ZNN) method, a continuous-time zeroing neural network (CTZNN) model is derived with the help of Kronecker product and vectorization technique. The convergence property of the model is analyzed. Two discrete-time ZNN models are obtained with the theoretical analyses of truncation error by using two Zhang et al.'s discretization (ZeaD) formulas with different precision to discretize the CTZNN model. The comparative numerical experiments are conducted for two discrete-time ZNN models, and the corresponding numerical results substantiate the convergence and effectiveness of two ZNN discrete-time models. (c) 2019 Elsevier B.V. All rights reserved.
机译:近年来,时变线性矩阵方程和不等式得到了广泛的研究。时变的Sylvester转置矩阵不等式是一个重要的变体,尚未得到充分研究。以建设性的方式解决时变问题仍然是一个挑战。这项研究考虑了从时变线性矩阵不等式到方程式的转换,以解决棘手的问题。在归零神经网络(ZNN)方法的基础上,借助Kronecker乘积和矢量化技术推导了连续时间归零神经网络(CTZNN)模型。分析了模型的收敛性。通过使用两个具有不同精度的Zhang等人的离散化(ZeaD)公式离散化CTZNN模型,通过截断误差的理论分析获得了两个离散时间ZNN模型。对两个离散时间ZNN模型进行了比较数值实验,相应的数值结果证实了两个ZNN离散时间模型的收敛性和有效性。 (c)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号