首页> 外文期刊>Neurocomputing >BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights
【24h】

BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights

机译:基于BreakHis的使用深度学习的乳腺癌自动诊断:分类学,调查和见解

获取原文
获取原文并翻译 | 示例

摘要

There are several breast cancer datasets for building Computer Aided Diagnosis systems (CADs) using either deep learning or traditional models. However, most of these datasets impose various trade-offs on practitioners related to their availability or inner clinical value. Recently, a public dataset called BreakHis has been released to overcome these limitations. BreakHis is organized into four magnification levels, each image is labeled according to its main category (Benign/Malignant) and its subcategory (A/F/PT/TA/PC/DC/LC/MC). This organization allows practitioners to address this problem either as a binary or a multi-category classification task with either a magnification dependent or independent training approach. In this work, we define a taxonomy that categorize this problem into four different reformulations: Magnification-Specific Binary (MSB), Magnification-Independent Binary (MIB), Magnification-Specific Multi-category (MSM) and Magnification-Independent Multi-category (MIM) classifications. We provide a comprehensive survey of all related works. We identify the best reformulation from clinical and practical standpoints. Finally, we explore for the first time the MIM approach using deep learning and draw the learnt lessons. (C) 2019 Elsevier B.V. All rights reserved.
机译:有一些乳腺癌数据集可用于使用深度学习或传统模型构建计算机辅助诊断系统(CAD)。但是,大多数这些数据集都对从业者进行了各种折衷,涉及到其可用性或内部临床价值。最近,已经发布了一个名为BreakHis的公共数据集,以克服这些限制。 BreakHis分为四个放大级别,每个图像均根据其主要类别(良性/恶性)及其子类别(A / F / PT / TA / PC / DC / LC / MC)进行标记。该组织允许从业者通过放大或独立训练方法将其作为二进制或多类别分类任务来解决。在这项工作中,我们定义了一个分类法,将这个问题分为四个不同的格式:特定于放大倍数的二进制(MSB),独立于放大倍数的二进制(MIB),特定于放大倍数的多类别(MSM)和独立于放大倍数的多类别( MIM)分类。我们提供所有相关作品的全面调查。我们从临床和实践的角度确定最佳的配方。最后,我们第一次使用深度学习探索MIM方法,并汲取经验教训。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第29期|9-24|共16页
  • 作者

  • 作者单位

    Univ Granada Andalusian Res Inst Data Sci & Computat Intellige E-18071 Granada Spain|Hassan 1st Univ Natl Sch Appl Sci Berrechid Syst Anal & Modeling Decis Support Lab Berrechid 218 Morocco;

    Hassan 1st Univ Natl Sch Appl Sci Berrechid Syst Anal & Modeling Decis Support Lab Berrechid 218 Morocco;

    Univ Granada Andalusian Res Inst Data Sci & Computat Intellige E-18071 Granada Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Breast cancer; BreakHis dataset; Histopathological images; Computer aided diagnosis; Deep learning; Data preprocessing;

    机译:乳腺癌;BreakHis数据集;组织病理学图像;计算机辅助诊断;深度学习;数据预处理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号