首页> 外文期刊>Neurocomputing >Implementation of circuit for reconfigurable memristive chaotic neural network and its application in associative memory
【24h】

Implementation of circuit for reconfigurable memristive chaotic neural network and its application in associative memory

机译:可重构忆阻混沌神经网络电路的实现及其在联想记忆中的应用

获取原文
获取原文并翻译 | 示例

摘要

Chaotic neural networks is widely used in associative memory because of its abundant chaotic behavior. The bridge synaptic circuit of the memristor has been mostly used in artificial neural networks, because of its synapse-like and non-volatile properties, but the weight addition circuit has a complicated structure, the high power consumption and the high complexity of the network, so the associative memory neural network circuit is still less implemented. In this paper, the memory characteristics of the threshold memristor is used to build the synaptic circuit, on the one hand, when the continuous voltage is applied to the memristor to alter its memristance, it can realize continuous synaptic weights from - 1 to 1. Synaptic weight circuit has simple structure and low energy consumption, due to the configurability of the threshold memristor, and different weights can be obtained in the same circuits to achieve the function of associative memory. On the other hand, we can realize self-associative memory, hetero-associative memory, the separation of superimposed patterns, many-to-many associative memory and application in the three-view drawing, through simulation experiments. Because of the nanoscale characteristics of memristor, the hardware implementation of large-scale chaotic neural network will has simplified structure and be integrated easily. (C) 2019 Published by Elsevier B.V.
机译:混沌神经网络由于其丰富的混沌行为而被广泛用于联想记忆中。忆阻器的桥突触电路由于具有类似突触的特性和非易失性,因此已被广泛用于人工神经网络,但是加重电路结构复杂,功耗高且网络复杂度高,因此联想记忆神经网络电路的实现仍然较少。本文采用阈值忆阻器的存储特性来构建突触电路,一方面,当对忆阻器施加连续电压以改变其忆阻时,可以实现从-1到1的连续突触权重。由于阈值忆阻器的可配置性,突触权重电路结构简单,能耗低,并且在同一电路中可以获得不同的权重,以实现关联存储器的功能。另一方面,通过仿真实验,我们可以实现自联想记忆,异联想记忆,叠加图案的分离,多对多联想记忆以及在三视图绘图中的应用。由于忆阻器的纳米特性,大规模混沌神经网络的硬件实现将具有简化的结构并易于集成。 (C)2019由Elsevier B.V.发布

著录项

  • 来源
    《Neurocomputing》 |2020年第7期|36-42|共7页
  • 作者

  • 作者单位

    Southwest Univ Coll Elect & Informat Engn Chongqing 400715 Peoples R China;

    Southwest Univ Coll Elect & Informat Engn Chongqing 400715 Peoples R China|Brain Inspired Comp & Intelligent Control Chongqi Chongqing 400715 Peoples R China;

    Brain Inspired Comp & Intelligent Control Chongqi Chongqing 400715 Peoples R China|Southwest Univ Coll Artificiall Intelligence Chongqing 400715 Peoples R China|Natl & Local Joint Engn Lab Intelligent Transmiss Chongqing 400715 Peoples R China|Chongqing Brain Sci Collaborat Innovat Ctr Chongqing 400715 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Memristor; Associative memory; Reconfigurable; Chaotic neural network;

    机译:忆阻器联想记忆;可重新配置;混沌神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号