首页> 外文期刊>Neurocomputing >Perceptual image hashing based on frequency dominant neighborhood structure applied to Tor domains recognition
【24h】

Perceptual image hashing based on frequency dominant neighborhood structure applied to Tor domains recognition

机译:基于频率优势邻域结构的感知图像哈希应用于Tor域识别

获取原文
获取原文并翻译 | 示例

摘要

Tor (The Onion Router) is one of the most famous anonymous networks in the Deep Web. It provides a wide range of legal and illegal hidden services to the user. Recognizing such illicit domains is a challenging task for Cyber Security and Law Enforcement Agencies. However, doing it manually, based only on the officers' experience, is slow and prone to errors. Therefore, in this paper, we propose an automatic method based on perceptual hashing to recognize services on the Tor network only by means of their snapshots. Firstly, we introduce and make publicly available DUSI-2K (Darknet Usage Service Images-2K), an image dataset which contains snapshots from active Tor service domains. We also present a new, efficient, robust and discriminative image hashing method, named F-DNS, built by incorporating the Dominant Neighborhood Structure (DNS) map and the Global Neighborhood Structure (GNS) texture energy map extracted from the discrete cosine transform of the image. In order to evaluate the efficiency of our hashing method, we carry out intra- and inter- tests using images from some state-of-the-art datasets subject to various content-preserving operations. The high correlation coefficient values that our method obtains, indicates that F-DNS performs better than other state-of-the-art methods, especially in the case of rotation. Additionally, we assess F-DNS for recognizing the category of Tor domains based on their snapshots using the DUSI-2K dataset. We compare its performance with three typical image classification methods, i.e. Bag of Visual Words (BoVW) and features obtained from ResNet50 and Inception-ResNet-v2. F-DNS outperforms all of them, with an accuracy of 98.75%, against 31.39%, 82.70% and 85.19%, respectively. Fine-tuning ResNet50 and Inception-Resnet-v2 for DUSI-2K does not improve the result, attaining 37.12% and 79.15%, respectively. (C) 2019 Elsevier B.V. All rights reserved.
机译:Tor(洋葱路由器)是Deep Web中最著名的匿名网络之一。它为用户提供了各种合法和非法的隐藏服务。对于网络安全和执法机构而言,识别此类非法域是一项艰巨的任务。但是,仅根据军官的经验进行手动操作很慢,而且容易出错。因此,在本文中,我们提出了一种基于感知哈希的自动方法,仅通过快照即可识别Tor网络上的服务。首先,我们介绍并公开提供DUSI-2K(Darknet使用服务映像2K),该映像数据集包含来自活动Tor服务域的快照。我们还提出了一种新的,有效的,鲁棒的和有区别的图像哈希方法,称为F-DNS,该方法通过合并从邻域的离散余弦变换中提取的主导邻域结构(DNS)映射和全局邻域结构(GNS)纹理能量映射来构建。图片。为了评估我们的哈希方法的效率,我们使用来自一些最新数据集的图像进行了内部和内部测试,这些图像经过各种内容保留操作。我们的方法获得的高相关系数值表明,F-DNS的性能优于其他最新方法,尤其是在旋转情况下。此外,我们使用DUSI-2K数据集对F-DNS进行评估,以基于其快照识别Tor域的类别。我们将其性能与三种典型的图像分类方法进行比较,即视觉单词袋(BoVW)和从ResNet50和Inception-ResNet-v2获得的功能。 F-DNS的性能均优于所有这些,准确度为98.75%,分别为31.39%,82.70%和85.19%。对DUSI-2K的ResNet50和Inception-Resnet-v2进行微调不会改善结果,分别达到37.12%和79.15%。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第28期|24-38|共15页
  • 作者

  • 作者单位

    Univ Leon Dept Elect Syst & Automat Engn Leon Spain|INCIBE Spanish Natl Cybersecur Inst Leon Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Perceptual hashing; Deep web; Tor; DCT; F-DNS; Image classification;

    机译:感知哈希深网;Tor;DCT;F-DNS;图片分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号