首页> 外文期刊>Neurocomputing >Food det: Detecting foods in refrigerator with supervised transformer network
【24h】

Food det: Detecting foods in refrigerator with supervised transformer network

机译:Food Det:在受监督的变压器网络下检测冰箱中的食物

获取原文
获取原文并翻译 | 示例

摘要

Most of existing methods mainly focus on the food image recognition which assumes that one food image contains only one food item. However, in this paper, we present a system to detect a diversity of foods in refrigerator where multiple food items may exist. In view of the refrigerator environment, we propose a food detection framework based on the supervised transformer network. More specifically, the supervised transformer network, dotted as RectNet, is first proposed to automatically select the irregular food regions and transform them to the frontal views. Then, based on the rectified food images, we further propose an end-to-end detection network that predicts the categories and locations of food items. The proposed detection network, called Lite Fully Convolutional Network (LiteFCN), is evolved from the advanced object detection algorithm Faster R-CNN while several significant improvements are tailored to achieve a higher accuracy and keep inference time efficiency. To validate the effectiveness of each component of our method, we build a real-world refrigerator dataset with 80 classes. Extensive experiments demonstrate that our methods achieve the state-of-the-art results, which improves the baseline by a large margin, e.g., 3-5% in terms of F-measure. We also show that the proposed detection network achieve a competitive result on the public PASCAL VOC2007 dataset, which outperforms the Faster R-CNN by 2.3% with a higher speed. (C) 2019 Elsevier B.V. All rights reserved.
机译:现有的大多数方法主要集中于食品图像识别,其假设一个食品图像仅包含一种食品。但是,在本文中,我们提出了一种系统,该系统可检测冰箱中可能存在多种食品的多种食品。鉴于冰箱环境,我们提出了一种基于监督变压器网络的食品检测框架。更具体地说,首先提出了一个被标记为RectNet的有监督的变压器网络,以自动选择不规则食物区域并将其转换为正面视图。然后,基于校正后的食物图像,我们进一步提出了一种预测食物类别和位置的端到端检测网络。所提出的检测网络称为Lite Fully卷积网络(LiteFCN),它是从先进的对象检测算法Faster R-CNN演变而来的,同时量身定制了多项重大改进以实现更高的准确性并保持推理时间效率。为了验证方法中每个组件的有效性,我们构建了一个具有80个类的真实冰箱数据集。广泛的实验表明,我们的方法达到了最新的结果,从而大大提高了基线,例如F度量的3%至5%。我们还表明,所提出的检测网络在公共PASCAL VOC2007数据集上取得了竞争性结果,其以更快的速度比Faster R-CNN快2.3%。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号