首页> 外文期刊>Neurocomputing >Effective piecewise planar modeling based on sparse 3D points and convolutional neural network
【24h】

Effective piecewise planar modeling based on sparse 3D points and convolutional neural network

机译:基于稀疏3D点和卷积神经网络的有效分段平面建模

获取原文
获取原文并翻译 | 示例

摘要

Piecewise planar stereo methods can approximately reconstruct the complete structures of a scene by overcoming challenging difficulties (e.g., poorly textured regions) that pixel-level stereo methods cannot resolve. In this paper, a novel plane assignment cost is first constructed by incorporating scene structure priors and high-level image features obtained by convolutional neural network (CNN). Then, the piecewise planar scene structures are reconstructed in a progressive manner that jointly optimizes image regions (or superpixels) and their associated planes, followed by a global plane assignment optimization under a Markov Random Field (MRF) framework. Experimental results on a variety of urban scenes confirm that the proposed method can effectively reconstruct the complete structures of a scene from only sparse three-dimensional (3D) points with high efficiency and accuracy and can achieve superior results compared with state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:分段平面立体方法可以克服像素级立体方法无法解决的挑战性难题(例如,纹理不佳的区域),从而大致重建场景的完整结构。在本文中,首先通过结合场景结构先验和通过卷积神经网络(CNN)获得的高级图像特征来构造一种新颖的飞机分配成本。然后,以联合方式优化图像区域(或超像素)及其关联平面的渐进方式重建分段平面场景结构,然后在马尔可夫随机场(MRF)框架下进行全局平面分配优化。在各种城市场景上的实验结果证实,所提出的方法可以高效,准确地仅从稀疏三维(3D)点有效地重构场景的完整结构,并且与最新状态相比可以获得更好的结果。艺术方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号