首页> 外文期刊>Neurocomputing >Impulsive synchronization of two coupled delayed reaction-diffusion neural networks using time-varying impulsive gains
【24h】

Impulsive synchronization of two coupled delayed reaction-diffusion neural networks using time-varying impulsive gains

机译:使用时变脉冲增益的两个耦合时滞反应扩散神经网络的脉冲同步

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of impulsive synchronization of two coupled delayed reaction-diffusion neural networks under aperiodic discrete measurements is revisited. Different from the previous static impulsive gain based impulsive synchronization strategy, a novel impulsive synchronization strategy using sampling-interval-dependent impulsive gains is proposed. The time-varying impulsive synchronization gains are able to adapt to the variation of sampling intervals, and thus can improve the synchronization performance. The stability analysis of the resultant synchronization error system is performed by applying an impulse-time-dependent discretized Lyapunov functions based method. Sufficient conditions for the existence of desired impulsive synchronization controllers are derived in terms of a set of linear matrix inequalities (LMIs). These conditions allow to synthesize time-varying impulsive gains. A numerical example is presented to demonstrate the effectiveness of the developed methodology. (c) 2019 Elsevier B.V. All rights reserved.
机译:本文讨论了非周期性离散测量下两个耦合时滞反应扩散神经网络的脉冲同步问题。与以前的基于静态脉冲增益的脉冲同步策略不同,提出了一种基于采样间隔相关的脉冲增益的新型脉冲同步策略。时变脉冲同步增益能够适应采样间隔的变化,从而可以提高同步性能。通过应用基于脉冲时间的离散化Lyapunov函数进行结果同步误差系统的稳定性分析。根据一组线性矩阵不等式(LMI),得出了存在所需脉冲同步控制器的充分条件。这些条件允许合成随时间变化的脉冲增益。数值例子表明了所开发方法的有效性。 (c)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号