首页> 外文期刊>Neurocomputing >Bayesian neural multi-source transfer learning
【24h】

Bayesian neural multi-source transfer learning

机译:贝叶斯神经多源迁移学习

获取原文
获取原文并翻译 | 示例

摘要

Although the use of deep learning and neural networks techniques are gaining popularity, there remain a number of challenges when multiple sources of information and data need to be combined. Although transfer learning and data fusion methodologies try to address this challenge, they lack robust uncertainty quantification which is crucial for decision making. Bayesian inference provides a rigorous approach for uncertainty quantification in decision making. Uncertainty quantification using Bayesian inference takes into consideration uncertainty associated with model parameters, as well as, the uncertainty in combining multiple sources of data. In this paper, we present a Bayesian framework for transfer learning using neural networks that considers single and multiple sources of data. We use existence of prior distributions to define the dependency between different data sources in a multi-source Bayesian transfer learning framework. We use Markov Chain Monte-Carlo method to obtain samples from the posterior distribution that consider the knowledge from the source datasets as priors. The results show that the framework provides a robust probabilistic approach for decision making with accuracy that is similar to gradient-based learning methods. Moreover, the results are comparable to related machine learning methods used for transfer learning in the literature. (C) 2019 Elsevier B.V. All rights reserved.
机译:尽管深度学习和神经网络技术的使用越来越流行,但是当需要组合多种信息和数据源时,仍然存在许多挑战。尽管转移学习和数据融合方法论试图解决这一挑战,但它们缺乏可靠的不确定性量化方法,这对于决策至关重要。贝叶斯推理为决策中的不确定性量化提供了严格的方法。使用贝叶斯推断的不确定性量化考虑了与模型参数相关的不确定性以及组合多个数据源时的不确定性。在本文中,我们提出了一个使用神经网络的转移学习的贝叶斯框架,该框架考虑了单个和多个数据源。我们使用先验分布的存在来定义多源贝叶斯转移学习框架中不同数据源之间的依赖关系。我们使用马尔可夫链蒙特卡罗方法从后验分布中获取样本,这些样本将来自源数据集的知识视为先验。结果表明,该框架提供了一种鲁棒的概率决策方法,其准确性与基于梯度的学习方法相似。此外,结果与文献中用于迁移学习的相关机器学习方法相当。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第22期|54-64|共11页
  • 作者

    Chandra Rohitash; Kapoor Arpit;

  • 作者单位

    Univ Sydney Ctr Translat Data Sci Sydney NSW 2006 Australia|Univ Sydney Sch Geosci Sydney NSW 2006 Australia;

    Univ Sydney Ctr Translat Data Sci Sydney NSW 2006 Australia|SRM Inst Sci & Technol Dept Comp Sci & Engn Chennai 603203 Tamil Nadu India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bayesian methods; Transfer learning; Neural networks; Data fusion; Bayesian neural networks;

    机译:贝叶斯方法;转移学习;神经网络;数据融合;贝叶斯神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号