首页> 外文期刊>Neurocomputing >Sample selection-based hierarchical extreme learning machine
【24h】

Sample selection-based hierarchical extreme learning machine

机译:基于样本选择的层次极限学习机

获取原文
获取原文并翻译 | 示例

摘要

Large amounts of training data in machine learning can keep the accuracy high to a certain extent, but the time costs are high because of the exorbitant amount of data and their dimensionality. Therefore, how to simultaneously select the most useful training data set and extract the main features of the samples, especially for image data, are essential problems that urgently need to be solved in the field of large-scale machine learning. Herein, a training sample selection method that is based on the fuzzy c-means clustering algorithm (FCM) is proposed for the problems. It first utilises condensed nearest neighbour (CNN) to make a preliminary selection of training samples. Then, it utilises the FCM to get the centres of the selected data, and, finally, it effectively condenses the sample using a compression parameter. Meanwhile, considering the critical influence of the sample features on the classification model, this paper selects the hierarchical extreme learning machine (H-ELM) model to better solve the classification task. Based on this, the paper presents the FCM-CNN-H-ELM framework for data classification, which combines FCM-Based CNN and H-ELM. The results of the experiments show that the proposed training sample selection method and classification framework can guarantee consistent, even higher, prediction results with a small number of training samples, and significantly reduce the training time. (C) 2019 Elsevier B.V. All rights reserved.
机译:机器学习中大量的训练数据可以在一定程度上保持较高的准确性,但是由于数据量大和维数大,时间成本很高。因此,如何同时选择最有用的训练数据集并提取样本的主要特征,尤其是图像数据,是大规模机器学习领域迫切需要解决的基本问题。针对这种问题,提出了一种基于模糊c均值聚类算法(FCM)的训练样本选择方法。它首先利用压缩最近邻(CNN)初步选择训练样本。然后,它利用FCM来获取所选数据的中心,最后,它使用压缩参数有效地压缩了样本。同时,考虑到样本特征对分类模型的关键影响,本文选择了层次极限学习机(H-ELM)模型来更好地解决分类任务。在此基础上,提出了一种基于FCM的CNN和H-ELM相结合的FCM-CNN-H-ELM数据分类框架。实验结果表明,所提出的训练样本选择方法和分类框架可以保证训练样本数量少,预测结果一致,甚至更高,并大大减少了训练时间。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第15期|95-102|共8页
  • 作者单位

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China|Minist Educ Engn Res Ctr Min Digital Xuzhou 221116 Jiangsu Peoples R China|Lanzhou Jiaotong Univ Key Lab Optotechnol & Intelligent Control Minist Educ Lanzhou 730070 Gansu Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China|Minist Educ Engn Res Ctr Min Digital Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China|Lanzhou Jiaotong Univ Key Lab Optotechnol & Intelligent Control Minist Educ Lanzhou 730070 Gansu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sample selection; Fuzzy C-means clustering; Condensed nearest neighbour; Hierarchical extreme learning machine;

    机译:样品选择;模糊C均值聚类;凝聚最近的邻居;分层极限学习机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号