首页> 外文期刊>Neurocomputing >Optical flow estimation using channel attention mechanism and dilated convolutional neural networks
【24h】

Optical flow estimation using channel attention mechanism and dilated convolutional neural networks

机译:使用通道注意机制和扩张卷积神经网络的光流估计

获取原文
获取原文并翻译 | 示例

摘要

Learning optical flow based on convolutional neural networks has made great progress in recent years. These approaches usually design an encoder-decoder network that can be trained end-to-end. In encoder part, high-level feature information is extracted through a series of strided convolution, which is similar to most image classification networks. In contrast to classification task, spatial feature maps are then enlarged to full scale of input by conducting successive deconvolution layer in decoder part. However, optical flow estimation is a pixel-level task, and blurry flow fields are usually generated, which is caused by unrefined features and low-resolution. To address this problem, we propose a novel network, which combines attention mechanism and dilated convolutional neural network. In this network, the channel-wise features are adaptively weighted by building interdependencies among channels, which can weaken the weights of useless features and can enhance the directivity of feature extraction. Meanwhile, spatial precision is achieved by employing dilated convolution which improves the receptive field without large computational source and keeps the spatial resolution of feature map unchanged. Our network is trained on FlyingChairs and FlyingThings3D datasets in a supervised manner. Extensive experiments are conducted on MPI-Sintel and KITTI datasets to verify the effectiveness of the proposed method. The experimental results show that attention mechanism and dilated convolution are beneficial for optical flow estimation. Moreover, our method achieves better accuracy and visual improvements comparing to most of recent approaches. (C) 2019 Elsevier B.V. All rights reserved.
机译:近年来,基于卷积神经网络的光流学研究取得了长足的进步。这些方法通常设计可以端到端训练的编码器-解码器网络。在编码器部分,通过一系列跨步卷积提取高级特征信息,这与大多数图像分类网络相似。与分类任务相反,然后通过在解码器部分进行连续的反卷积层,将空间特征图放大到完整的输入比例。但是,光流估计是像素级的任务,并且通常会生成模糊的流场,这是由于特征不完善和分辨率较低所致。为了解决这个问题,我们提出了一种新颖的网络,该网络将注意力机制和扩张的卷积神经网络相结合。在该网络中,通过在通道之间建立相互依赖性来自适应加权通道级特征,这可以削弱无用特征的权重并可以增强特征提取的方向性。同时,通过使用扩张卷积来实现空间精度,这在没有大量计算源的情况下改善了接收场,并保持了特征图的空间分辨率不变。我们的网络以有监督的方式接受了FlyingChairs和FlyingThings3D数据集的培训。在MPI-Sintel和KITTI数据集上进行了广泛的实验,以验证所提出方法的有效性。实验结果表明,注意力机制和扩张卷积对于光流估计是有益的。此外,与大多数最新方法相比,我们的方法具有更好的准确性和视觉效果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号