首页> 外文期刊>Neurocomputing >Non-orthogonal approximate joint diagonalization of non-Hermitian matrices in the least-squares sense
【24h】

Non-orthogonal approximate joint diagonalization of non-Hermitian matrices in the least-squares sense

机译:最小二乘意义上非Hermitian矩阵的非正交近似联合对角化

获取原文
获取原文并翻译 | 示例

摘要

A non-orthogonal approximate joint diagonalization (AJD) algorithm of a set of non-Hermitian matrices is presented. Specifically, the proposed algorithm aims to find two distinct general (not necessarily orthogonal nor square) diagonalizing matrices which minimize the least-squares (LS) criterion based on the gradient and an optimal rank-1 approximation approach. It can be used to compute the canonical polyadic decomposition (CPD) of the third-order tensor. Simulation results demonstrate that the proposed algorithm has good convergence, robustness and accuracy properties. The joint blind source separation UBSS) problem of two datasets can be effectively solved based on the proposed algorithm. (C) 2019 Elsevier B.V. All rights reserved.
机译:提出了一组非Hermitian矩阵的非正交近似联合对角化(AJD)算法。具体而言,提出的算法旨在找到两个不同的通用(不一定是正交或平方)对角化矩阵,它们基于梯度和最佳秩1逼近方法最小化最小二乘(LS)准则。它可用于计算三阶张量的规范多态分解(CPD)。仿真结果表明,该算法具有良好的收敛性,鲁棒性和准确性。该算法可以有效地解决两个数据集的联合盲源分离(UBSS)问题。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号