首页> 外文期刊>Neurocomputing >Robust nonparallel support vector machines via second-order cone programming
【24h】

Robust nonparallel support vector machines via second-order cone programming

机译:通过二阶锥规划的鲁棒非并行支持向量机

获取原文
获取原文并翻译 | 示例

摘要

A novel binary classification approach is proposed in this paper, extending the ideas behind nonparallel support vector machine (NPSVM) to robust machine learning. NPSVM constructs two twin hyperplanes by solving two independent quadratic programming problems and generalizes the well-known twin support vector machine (TWSVM) method. Robustness is conferred on the NPSVM approach by using a probabilistic framework for maximizing model fit, which is cast into two second-order cone programming (SOCP) problems by assuming a worst-case setting for the data distribution of the training patterns. Experiments on benchmark datasets confirmed the theoretical virtues of our approach, showing superior average performance compared with various SVM formulations. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文提出了一种新颖的二进制分类方法,将非并行支持向量机(NPSVM)背后的思想扩展到了鲁棒的机器学习中。 NPSVM通过解决两个独立的二次规划问题来构造两个孪生超平面,并推广了众所周知的孪生支持向量机(TWSVM)方法。通过使用概率框架来最大化模型拟合,NPSVM方法具有鲁棒性,通过假定训练模式的数据分布的最坏情况设置,该框架可分为两个二阶锥规划(SOCP)问题。在基准数据集上进行的实验证实了我们方法的理论优势,与各种SVM公式相比,其平均性能更高。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号