首页> 外文期刊>Neurocomputing >Active learning with error-correcting output codes
【24h】

Active learning with error-correcting output codes

机译:主动学习与纠错输出代码

获取原文
获取原文并翻译 | 示例

摘要

In many real-world classification problems, while there is a large amount of unlabeled data, labeled data is usually hard to acquire. One way to solve these problems is active learning. It aims to select the most valuable instances for labeling and construct a superior classifier. Most existing active learning algorithms are designed for binary classification problems, only a few algorithms can deal with multi-class cases. Moreover, as most multi-class active learning methods are directly extended from binary active learning methods, it is difficult for them to fuse the output results of binary cases. In this paper, we propose a novel multi-class active learning algorithm to tackle the above problems and select the most informative instances, called active learning with error-correcting output codes (ECOCAL). We create a codeword for each class and then obtain a test code for each unlabeled instance by error-correcting output codes (ECOC) framework, which is a powerful tool to combine multiple binary classifiers to address multi-class classification problems. By calculating the variance of the distance between a test code and all codewords, the proposed algorithm is able to measure the uncertainty across multiple classes. Extensive experimental results show that the proposed method outperforms several state-of-the-art active learning methods on both binary and multi-class datasets. (C) 2019 Elsevier B.V. All rights reserved.
机译:在许多现实世界中的分类问题中,尽管有大量未标记的数据,但通常很难获取标记的数据。解决这些问题的一种方法是主动学习。它旨在选择最有价值的实例进行标记,并构建一个出色的分类器。现有的大多数主动学习算法都是针对二进制分类问题而设计的,只有少数算法可以处理多类情况。此外,由于大多数多类主动学习方法是直接从二进制主动学习方法扩展而来的,因此很难融合二进制案例的输出结果。在本文中,我们提出了一种新颖的多类主动学习算法来解决上述问题并选择信息量最大的实例,称为带有纠错输出代码的主动学习(ECOCAL)。我们为每个类创建一个码字,然后通过纠错输出代码(ECOC)框架为每个未标记的实例获取测试代码,该框架是组合多个二进制分类器以解决多类分类问题的强大工具。通过计算测试代码和所有代码字之间的距离的方差,所提出的算法能够测量多个类别之间的不确定性。大量的实验结果表明,该方法在二进制和多类数据集上均优于几种最新的主动学习方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号