首页> 外文期刊>Neurocomputing >Hybrid extreme learning machine approach for heterogeneous neural networks
【24h】

Hybrid extreme learning machine approach for heterogeneous neural networks

机译:异构神经网络的混合极限学习机方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a hybrid learning approach, which combines the extreme learning machine (ELM) with a genetic algorithm (GA), is proposed. The utilization of this hybrid algorithm enables the creation of heterogeneous single layer neural networks (SLNNs) with better generalization ability than traditional ELM in terms of lower mean square error (MSE) for regression problems or higher accuracy for classification problems. The architecture of this method is not limited to traditional linear neurons, where each input participates equally to the neuron's activation, but is extended to support higher order neurons which affect the network's generalization ability. Initially, the proposed heterogeneous hybrid extreme learning machine (He-HyELM) algorithm creates a number of custom created neurons with different structure, which are used for the creation of homogeneous SLNNs. These networks are trained with ELM and an application specific GA evolves them into heterogeneous networks according to a fitness criterion utilizing the uniform crossover operator for the recombination process. After the completion of the evolution process, the network with the best fitness is selected as the most optimal. Experimental results demonstrate that the proposed learning algorithm can get better results than traditional ELM, homogeneous hybrid extreme learning machine (Ho-HyELM) and optimally pruned extreme learning machine (OP-ELM) for homogeneous and heterogeneous SLNNs. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文提出了一种混合学习方法,将极限学习机(ELM)与遗传算法(GA)相结合。利用这种混合算法,可以创建比传统ELM具有更好泛化能力的异构单层神经网络(SLNN),这对于回归问题具有较低的均方误差(MSE),对于分类问题具有较高的准确性。此方法的体系结构不限于传统的线性神经元,在传统线性神经元中,每个输入均同等地参与神经元的激活,而是扩展为支持影响网络泛化能力的高阶神经元。最初,提出的异构混合极限学习机(He-HyELM)算法创建了许多具有不同结构的自定义创建的神经元,这些神经元用于创建同质SLNN。这些网络使用ELM进行训练,并且特定用途的GA根据适合性标准将其转化为异构网络,该准则使用统一交叉算子进行重组过程。演进过程完成后,将选择适应性最佳的网络作为最佳网络。实验结果表明,针对同质和异构SLNN,该算法比传统的ELM,同类混合极限学习机(Ho-HyELM)和最优删减极限学习机(OP-ELM)可获得更好的效果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号