首页> 外文期刊>Neurocomputing >End-to-end semantic-aware object retrieval based on region-wise attention
【24h】

End-to-end semantic-aware object retrieval based on region-wise attention

机译:基于区域注意的端到端语义感知对象检索

获取原文
获取原文并翻译 | 示例

摘要

Image representations based on pre-trained Convolutional Neural Networks (CNNs) have achieved the new state of the art in computer vision tasks such as object retrieval. Such methods usually encode the activations of convolutional layers to produce highly competitive global or local representations, as they contain the spatial information of the input image. In this work, we propose the region-wise attention mechanism to generate a semantic-aware encoding of convolutional features by two different methods. One is to re-weight the convolutional features according to the pixel-wise label from the semantic segmentation CNNs, and the other is to design a spatial attention block that adaptively recalibrates region-wise weights by explicitly modelling interdependencies between channels. We further build an end-toend semantic-aware object retrieval pipeline based on off-the-shelf models and assess the performance of our proposed approach on the public available datasets Oxford5k and Paris6k, including large-scale datasets Oxford105k and Paris106k. As a result, we significantly improve the current state of the art. (C) 2019 Elsevier B.V. All rights reserved.
机译:基于预训练卷积神经网络(CNN)的图像表示已在计算机视觉任务(如对象检索)中取得了最新的发展水平。由于这些方法包含输入图像的空间信息,因此通常对卷积层的激活进行编码以产生高度竞争的全局或局部表示。在这项工作中,我们提出了一种区域注意机制,通过两种不同的方法来生成卷积特征的语义感知编码。一种方法是根据语义分割CNN的像素方向标签对卷积特征进行加权,另一种方法是设计一种空间注意力块,该模块通过显式建模通道之间的相互依赖性来自适应地重新校准区域方向的加权。我们还基于现成的模型进一步构建了一个端到端的语义感知对象检索管道,并在公众可用的数据集Oxford5k和Paris6k(包括大规模数据集Oxford105k和Paris106k)上评估了我们提出的方法的性能。结果,我们大大改善了现有技术水平。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第24期|219-226|共8页
  • 作者

    Li Xiu; Jin Kun; Long Rujiao;

  • 作者单位

    Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China;

    Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China;

    Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object retrieval; Semantic-aware encoding; Region-wise attention;

    机译:对象检索;语义感知编码;区域 - 明智的关注;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号