首页> 外文期刊>Neurocomputing >Monotonic classification: An overview on algorithms, performance measures and data sets
【24h】

Monotonic classification: An overview on algorithms, performance measures and data sets

机译:单调分类:算法,性能指标和数据集概述

获取原文
获取原文并翻译 | 示例

摘要

Currently, knowledge discovery in databases is an essential first step when identifying valid, novel and useful patterns for decision making. There are many real-world scenarios, such as bankruptcy prediction, option pricing or medical diagnosis, where the classification models to be learned need to fulfill restrictions of monotonicity (i.e. the target class label should not decrease when input attributes values increase). For instance, it is rational to assume that a higher debt ratio of a company should never result in a lower level of bankruptcy risk. Consequently, there is a growing interest from the data mining research community concerning monotonic predictive models. This paper aims to present an overview of the literature in the field, analyzing existing techniques and proposing a taxonomy of the algorithms based on the type of model generated. For each method, we review the quality metrics considered in the evaluation and the different data sets and monotonic problems used in the analysis. In this way, this paper serves as an overview of monotonic classification research in specialized literature and can be used as a functional guide for the field. (C) 2019 Elsevier B.V. All rights reserved.
机译:当前,在确定有效,新颖和有用的决策模式时,数据库中的知识发现是必不可少的第一步。在许多现实世界中,例如破产预测,期权定价或医疗诊断,其中要学习的分类模型需要满足单调性的限制(即,当输入属性值增加时,目标类别标签不应减少)。例如,合理的假设是,较高的公司债务比率永远不会导致较低的破产风险。因此,数据挖掘研究界对单调预测模型的兴趣日益浓厚。本文旨在概述该领域的文献,分析现有技术并根据生成的模型类型提出算法分类法。对于每种方法,我们都会审查评估中考虑的质量指标以及分析中使用的不同数据集和单调问题。这样,本文可作为专业文献中单调分类研究的概述,并可作为该领域的功能指南。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号