首页> 外文期刊>Neurocomputing >Compressed binary discernibility matrix based incremental attribute reduction algorithm for group dynamic data
【24h】

Compressed binary discernibility matrix based incremental attribute reduction algorithm for group dynamic data

机译:基于压缩二进制可分辨矩阵的组动态数据增量属性约简算法

获取原文
获取原文并翻译 | 示例

摘要

The datasets in real-world applications often vary dynamically over time. Moreover, datasets often expand by introducing a group of data in many cases rather than a single object one by one. The traditional incremental attribute reduction approaches for a single dynamic object may not be applied to such cases. Focusing on this issue, a compressed binary discernibility matrix is introduced and an incremental attribute reduction algorithm for group dynamic data is developed. The single dynamic object and the group dynamic objects are both considered in this algorithm. According to the dynamic data is a single object or a group of objects, different branches can be chosen to update the compressed binary discernibility matrix. Thereafter, the incremental reduction result can be obtained based on the updated compressed binary discernibility matrix. The validity of this algorithm is demonstrated by simulation and experimental analysis. (C) 2019 Elsevier B.V. All rights reserved.
机译:实际应用中的数据集通常会随时间动态变化。此外,在很多情况下,数据集通常通过引入一组数据而不是一个对象一个对象来扩展。针对单个动态对象的传统增量属性约简方法可能不适用于此类情况。针对此问题,引入了压缩的二进制可分辨矩阵,并开发了用于组动态数据的增量属性约简算法。该算法考虑单个动态对象和组动态对象。根据动态数据是单个对象还是一组对象,可以选择不同的分支来更新压缩的二进制可分辨矩阵。此后,可以基于更新的压缩二进制可分辨矩阵获得增量减少结果。仿真和实验分析证明了该算法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第7期|20-27|共8页
  • 作者单位

    Nanjing Univ Finance & Econ, Coll Informat Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ Finance & Econ, Coll Informat Engn, Nanjing 210023, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Group dynamic data; Attribute reduction; Incremental algorithm; Compressed binary discernibility matrix;

    机译:组动态数据;属性约简;增量算法;压缩二进制可分辨矩阵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号