首页> 外文期刊>Knowledge-Based Systems >Discernibility matrix based incremental attribute reduction for dynamic data
【24h】

Discernibility matrix based incremental attribute reduction for dynamic data

机译:基于区分矩阵的动态数据增量属性约简

获取原文
获取原文并翻译 | 示例

摘要

Dynamic data, in which the values of objects vary over time, are ubiquitous in real applications. Although researchers have developed a few incremental attribute reduction algorithms to process dynamic data, the reducts obtained by these algorithms are usually not optimal. To overcome this deficiency, in this paper, we propose a discernibility matrix based incremental attribute reduction algorithm, through which all reducts, including the optimal reduct, of dynamic data can be incrementally acquired. Moreover, to enhance the efficiency of the discernibility matrix based incremental attribute reduction algorithm, another incremental attribute reduction algorithm is developed based on the discernibility matrix of a compact decision table. Theoretical analyses and experimental results indicate that the latter algorithm requires much less time to find reducts than the former, and that the same reducts can be output by both. (C) 2017 Elsevier B.V. All rights reserved.
机译:在实际应用中,对象的值随时间变化的动态数据无处不在。尽管研究人员开发了一些增量属性约简算法来处理动态数据,但是通过这些算法获得的约简通常不是最佳的。为了克服这一缺陷,在本文中,我们提出了一种基于可分辨矩阵的增量属性约简算法,通过该算法,可以增量获取动态数据的所有约简,包括最优约简。此外,为了提高基于可分辨矩阵的增量属性约简算法的效率,基于紧凑决策表的可分辨矩阵开发了另一种增量属性约简算法。理论分析和实验结果表明,后一种算法比前一种算法需要更少的时间来找到还原,并且两者可以输出相同的还原。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2018年第15期|142-157|共16页
  • 作者单位

    Shanxi Univ, Sch Comp & Informat Technol, Key Lab Computat Intelligence & Chinese Informat, Minist Educ, Taiyuan 030006, Shanxi, Peoples R China;

    Shanxi Univ, Sch Comp & Informat Technol, Key Lab Computat Intelligence & Chinese Informat, Minist Educ, Taiyuan 030006, Shanxi, Peoples R China;

    Shanxi Univ, Sch Comp & Informat Technol, Key Lab Computat Intelligence & Chinese Informat, Minist Educ, Taiyuan 030006, Shanxi, Peoples R China;

    Shanxi Univ, Sch Comp & Informat Technol, Key Lab Computat Intelligence & Chinese Informat, Minist Educ, Taiyuan 030006, Shanxi, Peoples R China;

    SUNY Buffalo, Dept Microbiol & Immunol, Buffalo, NY 14201 USA|SUNY Buffalo, Dept Biostat, Dept Comp Sci & Engn, Buffalo, NY 14201 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Attribute reduction; Discernibility matrix; Incremental algorithm; Dynamic data;

    机译:属性约简;区分矩阵;增量算法;动态数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号