首页> 外文期刊>Neurocomputing >Stacked U-shape networks with channel-wise attention for image super-resolution
【24h】

Stacked U-shape networks with channel-wise attention for image super-resolution

机译:堆叠式U形网络具有面向通道的注意力,可实现图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Recent years have witnessed great success of Single Image Super-Resolution (SISR) with convolutional neural network (CNN) based models. Most existing Super-Resolution (SR) networks use bicubic upscaled images as input or directly use low-resolution images as input and do transposed convolution or sub-pixel convolution only in the reconstruction stage which do not use the hierarchical features across the network for final reconstruction. In this paper, we propose a novel stacked U-shape networks with channel-wise attention (SUSR) for SISR. In general, the proposed network consists of four parts, which are shallow feature extraction block, stacked U-shape blocks which produce high-resolution features, residual channel-wise attention blocks and reconstruction block respectively. The hierarchical high-resolution features produced by U-shape blocks have the same size with the final super-resolved image, thus different to existing methods we do upsampling operator in U-shape blocks. In order to fully exploit the different hierarchical features, we propose residual attention block (RAB) to perform feature refinement which explicitly model relationships between channels. Experiments on five public datasets show that our method can achieve much higher Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) scores than the state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:近年来,基于卷积神经网络(CNN)的模型见证了单图像超分辨率(SISR)的巨大成功。现有的大多数超分辨率(SR)网络都使用双三次放大图像作为输入或直接使用低分辨率图像作为输入,并且仅在重建阶段才进行转置卷积或子像素卷积,而这些阶段并没有使用整个网络的层次特征进行最终重建。在本文中,我们提出了一种新颖的堆叠U型网络,用于SISR的通道方向关注(SUSR)。通常,所提出的网络由四个部分组成,分别是浅层特征提取块,产生高分辨率特征的堆叠U形块,分别残留的通道注意块和重构块。 U形块产生的分层高分辨率特征与最终的超分辨图像具有相同的大小,因此与我们在U形块中对算子进行上采样的现有方法不同。为了充分利用不同的层次结构特征,我们提出了剩余注意力块(RAB)来进行特征优化,从而显式地对通道之间的关系进行建模。在五个公共数据集上的实验表明,与最新方法相比,我们的方法可以获得更高的峰值信噪比(PSNR)和结构相似性(SSIM)分数。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号