首页> 外文期刊>Neurocomputing >Photo-realistic image bit-depth enhancement via residual transposed convolutional neural network
【24h】

Photo-realistic image bit-depth enhancement via residual transposed convolutional neural network

机译:通过残差转置卷积神经网络实现逼真的图像位深度增强

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, with the rapid development of high bit-depth (HBD) monitors, the demands for high quality image visualization have been raised. However, a prominent problem is the inconsistency between existing low bit-depth (LBD) images and HBD monitors. When LBD images are simply de-quantized to HBD ones, there will be severe false contour artifacts in smooth gradient areas, degrading image visual quality. Therefore, bit-depth enhancement plays a key role in viewing LBD images on HBD monitors. In this paper, motivated by the promising results of deep Convolutional Neural Network (CNN) in generating realistic high-quality images, we proposed a novel algorithm to recover photo-realistic HBD images. To the best of our knowledge, CNN is introduced to bit-depth enhancement task for the first time. A novel neural network is proposed with summation and concatenation skip connections among transposed convolutional layers to cope with the gradient vanishing problem. Besides, different from traditional pixel-wise loss functions, perceptual loss is adopted to reconstruct images with higher visual quality and structural similarity to original HBD sources. Experiments performed on three datasets demonstrate that the proposed method outperforms state-of-the-art algorithms objectively and subjectively with suppressed false contour artifacts and preserved textures. (C) 2019 Elsevier B.V. All rights reserved.
机译:如今,随着高位深度(HBD)监视器的飞速发展,对高质量图像可视化的需求不断提高。但是,一个突出的问题是现有的低位深度(LBD)图像和HBD监视器之间的不一致。当将LBD图像简单地量化为HBD图像时,在平滑的渐变区域中会出现严重的伪轮廓伪影,从而降低图像的视觉质量。因此,位深度增强在查看HBD监视器上的LBD图像中起着关键作用。在本文中,受深层卷积神经网络(CNN)在生成逼真的高质量图像方面的有希望的结果的启发,我们提出了一种新颖的算法来恢复逼真的HBD图像。据我们所知,CNN首次被引入位深度增强任务。提出了一种新颖的神经网络,在转置的卷积层之间具有求和和跳过连接,以解决梯度消失问题。此外,与传统的像素损失函数不同,采用感知损失来重建具有更高视觉质量和与原始HBD源相似的结构的图像。在三个数据集上进行的实验表明,该方法在抑制主观虚假伪影和保留纹理方面,在客观和主观上均优于最新算法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号