...
首页> 外文期刊>Neurocomputing >A varying-gain recurrent neural-network with super exponential convergence rate for solving nonlinear time-varying systems
【24h】

A varying-gain recurrent neural-network with super exponential convergence rate for solving nonlinear time-varying systems

机译:求解非线性时变系统的具有超指数收敛速度的变增益递归神经网络

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In order to solve a nonlinear time-varying system, a novel varying-gain recurrent neural network (termed as VG-RNN) is proposed and analyzed. To achieve a fast convergent performance, a vector-based unbounded error function is first defined. Second, a varying-gain neural dynamic approach is employed to design the recurrent neural network formula. Being different from the traditional constant-gain recurrent neural networks with fixed design parameters such as the gradient-based neural network (termed as GNN) and the zeroing neural network (termed as ZNN), the gain coefficient of the proposed VG-RNN is time-varying, which can change with time evolves. Otherwise, compared to the previous numerical methods on solving nonlinear time-varying systems, the solution obtained by VG-RNN is more precise. Third, rigorous mathematics analysis proves the super exponential convergence and accuracy of the proposed VG-RNN. Numerical experiments demonstrate the high accuracy, effectiveness and superiority of the VG-RNN compared with the conventional neural networks for solving nonlinear time-varying systems. Furthermore, we hope to apply the theory proposed in this paper to practical nonlinear time-varying automatic control systems, such as robots with nonlinear time-varying systems. (C) 2019 Elsevier B.V. All rights reserved.
机译:为了解决非线性时变系统,提出并分析了一种新颖的变增益递归神经网络(称为VG-RNN)。为了实现快速收敛的性能,首先定义了基于向量的无界误差函数。其次,采用变增益神经动力学方法设计递归神经网络公式。与具有固定设计参数的传统恒定增益递归神经网络(例如基于梯度的神经网络(称为GNN)和归零神经网络(称为ZNN))不同,提出的VG-RNN的增益系数为时间随时间变化而变化。否则,与以前的求解非线性时变系统的数值方法相比,VG-RNN获得的解更精确。第三,严格的数学分析证明了所提出的VG-RNN的超指数收敛性和准确性。数值实验表明,与解决非线性时变系统的传统神经网络相比,VG-RNN具有更高的准确性,有效性和优越性。此外,我们希望将本文提出的理论应用于实际的非线性时变自动控制系统,例如具有非线性时变系统的机器人。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号