首页> 外文期刊>Neurocomputing >A deep learning framework for identifying children with ADHD using an EEG-based brain network
【24h】

A deep learning framework for identifying children with ADHD using an EEG-based brain network

机译:使用基于EEG的大脑网络识别ADHD儿童的深度学习框架

获取原文
获取原文并翻译 | 示例

摘要

The convolutional neural network (CNN) is a mainstream deep learning (DL) algorithm. However, the application of DL techniques in attention-deficit/hyperactivity disorder (ADHD) studies is still limited. Electroencephalography (EEG) is an informative neuroimaging tool. In this study, we propose a DL framework for the ADHD identification problem by combining an EEG-based brain network with the CNN. By reorganizing the order of the channels, we proposed a new form of the connectivity matrix to adapt the concept of the convolution operation of the CNN. The correlations between the deep features derived from the CNN models and 13 hand-crafted measures of the brain network were also analyzed. We collected EEG data from 50 children with ADHD (9 girls, mean age: 10.44 +/- 0.75) and 51 handedness- and age-matched controls, and we used mutual information (MI) to quantify the synchronization between channels. We demonstrated the feasibility of the framework and discussed some critical concerns in the application of the framework. Some of the practical suggestions were also given based on the validation results. The proposed framework achieved a convincing performance with an accuracy of 94.67% on the test data. We also validated the validity of the form of the connectivity matrix, which enabled the models to achieve better performance. This finding suggests that the data representation in the DL framework is important. Seventeen deep features showed significant between-group differences, and had significant correlations with hand-crafted measures, thereby reflecting the amazing learning ability of the method for finding the deviations in the brain network of children with ADHD. The proposed framework is broadly applicable to the ADHD identification problem. Nevertheless, the validation of this methodology with a large and well-matched sample of children is needed in the future. (C) 2019 Published by Elsevier B.V.
机译:卷积神经网络(CNN)是主流的深度学习(DL)算法。但是,DL技术在注意力缺陷/多动障碍(ADHD)研究中的应用仍然受到限制。脑电图(EEG)是一种信息丰富的神经影像工具。在这项研究中,我们通过结合基于EEG的大脑网络和CNN提出了用于ADHD识别问题的DL框架。通过重新组织通道的顺序,我们提出了一种新形式的连接矩阵,以适应CNN卷积运算的概念。还分析了来自CNN模型的深层特征与13种手工制作的大脑网络度量之间的相关性。我们收集了50名多动症儿童(9名女孩,平均年龄:10.44 +/- 0.75)和51名与行为和年龄相匹配的对照者的脑电数据,并使用相互信息(MI)量化了渠道之间的同步。我们演示了该框架的可行性,并讨论了该框架应用中的一些关键问题。根据验证结果还给出了一些实用建议。所提出的框架取得了令人信服的性能,测试数据的准确度为94.67%。我们还验证了连通性矩阵形式的有效性,这使模型可以实现更好的性能。这一发现表明,DL框架中的数据表示很重要。十七个深层特征显示出显着的组间差异,并且与手工测量具有显着的相关性,从而反映了发现多动症儿童大脑网络偏差的方法的惊人学习能力。所提出的框架广泛适用于ADHD识别问题。尽管如此,将来仍需要大量匹配的儿童样本对该方法进行验证。 (C)2019由Elsevier B.V.发布

著录项

  • 来源
    《Neurocomputing》 |2019年第3期|83-96|共14页
  • 作者

    Chen He; Song Yan; Li Xiaoli;

  • 作者单位

    Beijing Normal Univ, IDG McGovern Inst Brain Res, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China;

    Beijing Normal Univ, IDG McGovern Inst Brain Res, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China;

    Beijing Normal Univ, IDG McGovern Inst Brain Res, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    EEG; ADHD; Deep learning; Brain network; Deep representation;

    机译:脑电图;多动症;深度学习;脑网络;深度表示;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号