首页> 外文期刊>Neurocomputing >Detail-preserving image super-resolution via recursively dilated residual network
【24h】

Detail-preserving image super-resolution via recursively dilated residual network

机译:通过递归扩张残差网络保持细节的图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Convolutional neural network (CNN) methods have been successfully applied in single image super-resolution (SR). However, existing very deep CNN based SR methods face with the challenge of memory footprint and computational complexity for real-world applications. Besides, many previous methods lack flexible ability to emphasize local spatial informative areas, which is limited to recover the high-frequency detail of LR input. In this paper, to address these problems, we implement a spatial modulated residual unit (SMRU) upon the dilated residual unit and propose a recursively dilated residual network (RDRN) to reconstruct high-resolution (HR) images from low-resolution (LR) observations. The proposed RDRN can effectively exploit the contextual information over larger regions and pay attention to the high-frequency parts for image detail recovery. Furthermore, such spatial modulation mechanism (SPM) in SMRU can incorporate well with existing SR models for better reconstruction performance. Extensive evaluations on public benchmark datasets demonstrate that our proposed method achieves superior performance in terms of quantitative and qualitative assessments. (C) 2019 Elsevier B.V. All rights reserved.
机译:卷积神经网络(CNN)方法已成功应用于单图像超分辨率(SR)。但是,现有的基于CNN的非常深层的SR方法面临现实应用程序的内存占用量和计算复杂性的挑战。此外,许多先前的方法缺乏强调局部空间信息区域的灵活能力,这仅限于恢复LR输入的高频细节。在本文中,为了解决这些问题,我们在扩张的残差单元上实现了空间调制残差单元(SMRU),并提出了递归扩张的残差网络(RDRN)以从低分辨率(LR)重构高分辨率(HR)图像观察。提出的RDRN可以有效地利用较大区域上的上下文信息,并注意用于图像细节恢复的高频部分。此外,SMRU中的这种空间调制机制(SPM)可以与现有SR模型很好地结合在一起,以获得更好的重建性能。对公共基准数据集的广泛评估表明,我们提出的方法在定量和定性评估方面均具有出色的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第17期|285-293|共9页
  • 作者

    Li Feng; Bai Huihui; Zhao Yao;

  • 作者单位

    Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China|Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China;

    Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China|Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China;

    Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China|Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image super-resolution; Spatial modulated dilated residual block; Contextual information; Image detail;

    机译:图像超分辨率;空间调制膨胀残差块;上下文信息;图像细节;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号