首页> 外文期刊>Neurocomputing >A novel deep learning driven, low-cost mobility prediction approach for 5G cellular networks: The case of the Control/Data Separation Architecture (CDSA)
【24h】

A novel deep learning driven, low-cost mobility prediction approach for 5G cellular networks: The case of the Control/Data Separation Architecture (CDSA)

机译:适用于5G蜂窝网络的新型深度学习驱动,低成本移动性预测方法:控制/数据分离架构(CDSA)的情况

获取原文
获取原文并翻译 | 示例

摘要

One of the fundamental goals of mobile networks is to enable uninterrupted access to wireless services without compromising the expected quality of service (QoS). This paper reports a number of significant contributions. First, a novel analytical model is proposed for holistic handover (HO) cost evaluation, that integrates signaling overhead, latency, call dropping, and radio resource wastage. The developed mathematical model is applicable to several cellular architectures, but the focus here is on the Control/Data Separation Architecture (CDSA). Second, data-driven HO prediction is proposed and evaluated as part of the holistic cost, for the first time, through novel application of a recurrent deep learning architecture, specifically, a stacked long-short-term memory (LSTM) model. Finally, simulation results and preliminary analysis reveal different cases where non-predictive and predictive deep neural networks can be effectively utilized, based on HO management requirements. Both analytical and machine learning models are evaluated with a benchmark, real-world dataset measuring human behaviors and interactions. Numerical and comparative simulation results demonstrate the potential of our proposed deep learning-driven HO management framework, as a future benchmark for the mobile networking and machine learning communities. (C) 2019 The Authors. Published by Elsevier B.V.
机译:移动网络的基本目标之一是在不影响预期服务质量(QoS)的情况下实现对无线服务的不间断访问。本文报告了许多重要的贡献。首先,提出了一种用于整体切换(HO)成本评估的新颖分析模型,该模型集成了信令开销,等待时间,呼叫丢失和无线电资源浪费。开发的数学模型适用于多种蜂窝体系结构,但此处的重点是控制/数据分离体系结构(CDSA)。其次,首次提出了数据驱动的HO预测,并将其作为整体成本的一部分进行评估,这是通过循环深度学习架构的新颖应用,特别是堆叠的长期短期记忆(LSTM)模型进行的。最后,仿真结果和初步分析显示了基于HO管理要求可以有效利用非预测性和预测性深度神经网络的不同情况。分析和机器学习模型均通过基准的真实世界数据集进行评估,该数据集可衡量人类行为和互动。数值和比较模拟结果证明了我们提出的深度学习驱动的HO管理框架的潜力,作为移动网络和机器学习社区的未来基准。 (C)2019作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号