首页> 外文期刊>Neurocomputing >Improving novelty detection with generative adversarial networks on hand gesture data
【24h】

Improving novelty detection with generative adversarial networks on hand gesture data

机译:借助手势数据生成对抗网络改进新颖性检测

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel way of solving the issue of classification of out-of-vocabulary gestures using Artificial Neural Networks (ANNs) trained in the Generative Adversarial Network (GAN) framework. A generative model augments the data set in an online fashion with new samples and stochastic target vectors, while a discriminative model determines the class of the samples. The approach was evaluated on the UC2017 SG and UC2018 DualMyo data sets. The generative models' performance was measured with a distance metric between generated and real samples. The discriminative models were evaluated by their accuracy on trained and novel classes. In terms of sample generation quality, the GAN is significantly better than a random distribution (noise) in mean distance, for all classes. In the classification tests, the baseline neural network was not capable of identifying untrained gestures. When the proposed methodology was implemented, we found that there is a trade-off between the detection of trained and untrained gestures, with some trained samples being mistaken as novelty. Nevertheless, a novelty detection accuracy of 95.4% or 90.2% (depending on the data set) was achieved with just 5% loss of accuracy on trained classes. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们提出了一种新颖的方法,可以使用在生成对抗网络(GAN)框架中训练的人工神经网络(ANN)解决语音外手势分类的问题。生成模型以在线方式通过新样本和随机目标向量来扩充数据集,而判别模型确定样本的类别。该方法在UC2017 SG和UC2018 DualMyo数据集上进行了评估。生成模型的性能通过生成的样本与实际样本之间的距离度量来衡量。通过在训练有素和新颖的课程上的准确性来评估判别模型。就样本生成质量而言,对于所有类别,GAN的平均距离明显优于随机分布(噪声)。在分类测试中,基线​​神经网络无法识别未经训练的手势。当所提出的方法得以实施时,我们发现在检测到经过训练的手势和未经训练的手势之间存在一个权衡,其中一些经过训练的样本被误认为是新颖的。但是,在经过培训的课程上,仅9%的准确性损失就达到了95.4%或90.2%(取决于数据集)的新颖性检测准确性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号