首页> 外文期刊>Neurocomputing >Optimization of neural network with wavelet transform and improved data selection using bat algorithm for short-term load forecasting
【24h】

Optimization of neural network with wavelet transform and improved data selection using bat algorithm for short-term load forecasting

机译:基于小波变换的神经网络优化和蝙蝠算法的短期负荷预测改进数据选择

获取原文
获取原文并翻译 | 示例

摘要

Short-term load forecasting is very important for reliable power system operation, even more so under electricity market deregulation and integration of renewable resources framework. This paper presents a new enhanced method for one day ahead load forecast, combing improved data selection and features extraction techniques (similar/recent day-based selection, correlation and wavelet analysis), which brings more "regularity" to the load time-series, an important precondition for the successful application of neural networks. A combination of Bat and Scaled Conjugate Gradient Algorithms is proposed to improve neural network learning capability. Another feature is the method's capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing using the Portuguese national system load, and the regional (state) loads of New England and New York, revealed promising forecasting results in comparison with other state-of-the-art methods, therefore proving the effectiveness of the assembled methodology. (C) 2019 Elsevier B.V. All rights reserved.
机译:短期负荷预测对于可靠的电力系统运行非常重要,在电力市场放松管制和可再生资源整合框架下,这一点尤其重要。本文提出了一种新的增强型方法,用于提前一天的负荷预测,结合了改进的数据选择和功能提取技术(基于相似/最近的基于天的选择,相关性和小波分析),从而为负荷时间带来了更多的“规律性”系列,是神经网络成功应用的重要前提。提出将蝙蝠算法和比例共轭梯度算法相结合,以提高神经网络的学习能力。另一个特点是该方法具有微调神经网络体系结构和小波分解的能力,而这没有最佳范例。使用葡萄牙国家系统负荷以及新英格兰和纽约的区域(州)负荷进行的数值测试显示,与其他最新方法相比,预测结果令人鼓舞,从而证明了组合方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号