首页> 外文期刊>Neurocomputing >A multi-encoder neural conversation model
【24h】

A multi-encoder neural conversation model

机译:多编码器神经对话模型

获取原文
获取原文并翻译 | 示例

摘要

With the development of deep neural networks, Sequence to sequence (Seq2Seq) models become a popular technique of conversation models. Current Seq2Seq models with single encoder-decoder structures tend to generate responses which contain high frequency patterns on datasets. However, these patterns are always generic and meaningless. Generic and meaningless responses will lead the conversation between computer and human to an end quickly. According to our observations, human conversations are always topic related. If the conversation data can be divided into different clusters according to their topics, high frequency patterns will be topic related rather than generic. We consider that a model trained in different clusters can generate more topic related and meaningful responses. Inspired by this idea, we propose a Multi-Encoder Neural Conversation (MENC) model. MENC can make use of topic information by its multi-encoder structure. To the best of our knowledge, it is the first work which applies multi-encoder structures into conversation models. We conduct our experiments on two daily conversation datasets. Our experiments show that MENC gets a better performance than other mainstream models on both subject and object evaluation metrics. (C) 2019 Published by Elsevier B.V.
机译:随着深度神经网络的发展,序列到序列(Seq2Seq)模型成为会话模型的流行技术。当前具有单一编码器-解码器结构的Seq2Seq模型倾向于生成包含数据集中高频模式的响应。但是,这些模式始终是通用的,没有意义。通用而毫无意义的响应将导致计算机与人之间的对话迅速结束。根据我们的观察,人类对话始终与主题相关。如果对话数据可以根据其主题分为不同的群集,则高频模式将与主题相关,而不是通用。我们认为,在不同集群中训练的模型可以产生更多与主题相关的有意义的响应。受此想法的启发,我们提出了一种多编码器神经对话(MENC)模型。 MENC可以通过其多编码器结构来使用主题信息。据我们所知,这是将多编码器结构应用于对话模型的第一项工作。我们对两个日常会话数据集进行实验。我们的实验表明,在主题和对象评估指标上,MENC的性能均优于其他主流模型。 (C)2019由Elsevier B.V.发布

著录项

  • 来源
    《Neurocomputing》 |2019年第17期|344-354|共11页
  • 作者单位

    South China Univ Technol, Sch Software Engn, Guangzhou, Guangdong, Peoples R China;

    South China Univ Technol, Sch Software Engn, Guangzhou, Guangdong, Peoples R China;

    South China Univ Technol, Sch Software Engn, Guangzhou, Guangdong, Peoples R China;

    South China Univ Technol, Sch Software Engn, Guangzhou, Guangdong, Peoples R China;

    Hong Kong Polytech Univ, Dept Comp, Hung Hom, Kowloon, Hong Kong, Peoples R China;

    Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-encoder; Conversation; Sequence-to-sequence models;

    机译:多编码器;会话;序列到序列模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号