首页> 外文期刊>Neurocomputing >Input-to-state stability of discrete-time memristive neural networks with two delay components
【24h】

Input-to-state stability of discrete-time memristive neural networks with two delay components

机译:具有两个延迟分量的离散时间忆阻神经网络的输入状态稳定性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a dynamic delay interval method is utilized to deal with the input-to-state stability problem of discrete-time memristive neural networks (DMNNs) with two delay components. This method relaxes the restriction on upper and lower bounds of the DMNNs delay intervals, which extends the fixed interval of a time-varying delay to a dynamic one. First, a tractable model of DMNNs is obtained via using semidiscretization technique. Furthermore, by constructing several novel Lyapunov-Krasovskii functionals, free-weighting matrices and using some techniques such as Refined Jensen-based inequalities, mathematical induction, we obtain some new sufficient conditions in the form of linear matrix inequality to ensure that the considered DMNNs with two time-varying delays are input-to-state stable. The input-to-state stability criteria for the DMNNs with two time-invariant delays are also provided. Finally, two numerical examples are presented to demonstrate the effectiveness of our theoretical results. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文采用动态延迟间隔方法来处理具有两个延迟分量的离散时间忆阻神经网络(DMNN)的输入到状态稳定性问题。这种方法放宽了对DMNN延迟间隔的上下限的限制,从而将时变延迟的固定间隔扩展为动态延迟。首先,通过使用半离散化技术获得了可处理的DMNN模型。此外,通过构造一些新颖的Lyapunov-Krasovskii泛函,自由加权矩阵并使用诸如精炼基于Jensen的不等式,数学归纳等技术,我们以线性矩阵不等式的形式获得了一些新的充分条件,以确保考虑的DMNN具有两个时变延迟是输入到状态稳定的。还提供了具有两个时不变时延的DMNN的输入到状态稳定性标准。最后,给出两个数值例子,以证明我们理论结果的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第15期|1-11|共11页
  • 作者单位

    Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Sichuan, Peoples R China|Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Sichuan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Discrete-time memristive neural Networks; Input-to-state stability; Two additive time-varying components; Dynamic delay interval;

    机译:离散忆阻神经网络;输入到状态稳定性;两个加性时变分量;动态延迟间隔;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号