首页> 外文期刊>Neurocomputing >Task-generic semantic convolutional neural network for web text-aided image classification
【24h】

Task-generic semantic convolutional neural network for web text-aided image classification

机译:基于任务的语义卷积神经网络的Web文本辅助图像分类

获取原文
获取原文并翻译 | 示例

摘要

In this work, we explore how to use external and auxiliary web text to improve image classification. The keystone of web text-aided image classification is the representation learning for these two modalities of data. In the recent decade, convolutional neural networks (CNN) as the core representation methods of images have become a commodity in computer vision community. On the other hand, the long reign of word vectors has the same wide-ranging impact on NLP for representation learning. Based on the pre-trained word vectors, we propose a novel semantic CNN (s-CNN) model for high-level text representation learning using task-generic semantic filters. However, the s-CNN model inevitably brings about surplus semantic filters to achieve better applicability and generalization in universal tasks. Moreover, the surplus filters may lead to semantic overlaps and feature redundancy issue. To address this issue, we develop the so-called s-CNN Clustered (s-CNNC) models that uses filter clusters instead of individual filters. Interacting with the image CNN models, the s-CNNC models can further boost image classification under a multi-modal framework (mm-CNN). In addition, we propose to use the external text information selectively in the mm-CNN network to alleviate the noise problem inherent in web text. We validate the effectiveness of the proposed models on six benchmark datasets, and the results show that our approaches achieve remarkable improvements. (C) 2018 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们探索如何使用外部和辅助Web文本来改善图像分类。 Web文本辅助图像分类的重点是对这两种数据形式的表示学习。在最近的十年中,卷积神经网络(CNN)作为图像的核心表示方法已成为计算机视觉界的一种商品。另一方面,单词向量的长期统治对表示学习的NLP具有相同的广泛影响。基于预训练的词向量,我们提出了一种新的语义CNN(s-CNN)模型,用于使用任务通用语义过滤器进行高级文本表示学习。然而,s-CNN模型不可避免地带来了多余的语义过滤器,以在通用任务中实现更好的适用性和通用性。此外,剩余过滤器可能导致语义重叠和特征冗余问题。为了解决此问题,我们开发了所谓的s-CNN群集(s-CNNC)模型,该模型使用过滤器群集而不是单个过滤器。 s-CNNC模型与图像CNN模型相互作用,可以在多模式框架(mm-CNN)下进一步增强图像分类。另外,我们建议在mm-CNN网络中有选择地使用外部文本信息,以缓解Web文本固有的噪声问题。我们在六个基准数据集上验证了提出的模型的有效性,结果表明我们的方法取得了显着改进。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号